A Fe-ion cross-linked carboxymethyl cellulose, Fe-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe-CMC to the lower-stiffness Fe-CMC gel, accompanied by the aerobic reoxidation of the Fe-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly--isopropylacrylamide (p-NIPAM)/Fe-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe-CMC gel for controlled drug release or soft robotic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009950PMC
http://dx.doi.org/10.1021/jacs.4c00625DOI Listing

Publication Analysis

Top Keywords

cross-linked carboxymethyl
8
carboxymethyl cellulose
8
dissipative transient
8
transient stiffness
8
fe-cmc gel
8
transient
5
fe-cmc
5
chemical photochemical-driven
4
dissipative
4
photochemical-driven dissipative
4

Similar Publications

Synthesis of waterborne polyurethane-carboxymethyl chitosan cross-linked biodegradable bio-based porous materials for the adsorption of methylene blue.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Faculty of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

The development of green and cost-effective biomass adsorbents is necessary for removing large amounts of dyes from wastewater. In this study, polyurethane prepolymers were synthesized using polycaprolactone diol (OH-PCL-OH), isophorone diisocyanate, and 2,2-dihydroxymethylpropionic acid, which were subsequently dispersed in aqueous carboxymethyl chitosan (CMCS) solution to produce waterborne polyurethane (WPU)-CMCS porous materials. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), thermogravimetric (TGA) and mercury intrusion porosimetry (MIP).

View Article and Find Full Text PDF

As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network.

View Article and Find Full Text PDF

Fabrication and characterization of in situ gelling oxidized carboxymethyl cellulose/gelatin nanofibers for wound healing applications.

Int J Biol Macromol

January 2025

Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Although tissue engineering science has made great progress, wound healing has remained a significant clinical challenge, especially in cases of severe injuries requiring advanced treatment strategies. This study aimed to develop patient-friendly in situ gelling nanofibers composed of oxidized carboxymethyl cellulose (OCMC) and gelatin for wound healing applications. A two-axial electrospinning technique was employed to fabricate OCMC/PVA-Gelatin hybrid nanofibers.

View Article and Find Full Text PDF

In order to address the issue of food contamination by microorganisms and effectively harness the antibacterial properties of nisin, we attempted to incorporate nisin into natural polymer films while addressing its inherent instability. An antibacterial food packaging film based on carboxymethyl chitosan (CCS) binding with L-cysteine (CYS) and oxidized konjac glucomannan (OKG) was developed through both Schiff base reaction and addition reaction of thiol aldehyde. To analyze the effect of addition reaction of thiol aldehyde on the CCS-CYS/OKG films' physicochemical properties, the CCS-CYS was prepared with different CYS combination rates, which were further used to fabricate composite films.

View Article and Find Full Text PDF

Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!