Concatenated Nanopore DNA Codes.

IEEE Trans Nanobioscience

Published: April 2024

In nanopore sequencers, single-stranded DNA molecules (or k-mers) enter a small opening in a membrane called a nanopore and modulate the ionic current through the pore, producing a channel output in the form of a noisy piecewise constant signal. An important problem in DNA-based data storage is finding a set of k-mers, i.e. a DNA code, that is robust against noisy sample duplication introduced by nanopore sequencers. Good DNA codes should contain as many k-mers as possible that produce distinguishable current signals (squiggles) as measured by the sequencer. The dissimilarity between squiggles can be estimated using a bound on their pairwise error probability, which is used as a metric for code design. Unfortunately, code construction using the union bound is limited to small k's due to the difficulty of finding maximum cliques in large graphs. In this paper, we construct large codes by concatenating codewords from a base code, thereby packing more information in a single strand while retaining the storage efficiency of the base code. To facilitate decoding, we include a circumfix in the base code to reduce the effect of the nanopore channel memory. We show that the decoding complexity scales as [Formula: see text], where m is the number of concatenated k-mers. Simulations show that the base code error rate is stable as m increases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNB.2024.3350001DOI Listing

Publication Analysis

Top Keywords

base code
16
dna codes
8
nanopore sequencers
8
code
7
concatenated nanopore
4
dna
4
nanopore dna
4
nanopore
4
codes nanopore
4
sequencers single-stranded
4

Similar Publications

Characterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.

View Article and Find Full Text PDF

Overexpression of miR-124 enhances the therapeutic benefit of TMZ treatment in the orthotopic GBM mice model by inhibition of DNA damage repair.

Cell Death Dis

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.

Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.

View Article and Find Full Text PDF

In addition to the 20 canonical amino acids encoded in the genetic code, there are two non-canonical ones: selenocysteine and pyrrolysine. The discovery of pyrrolysine synthetases (PylRSs) was a key event in the field of genetic code expansion research. The importance of this discovery is mainly due to the fact that the translation systems involving PylRS, pyrrolysine tRNA (tRNA) and pyrrolysine are orthogonal to the endogenous translation systems of organisms that do not use this amino acid in protein synthesis.

View Article and Find Full Text PDF

RNA editing is a significant mechanism underlying genetic variation and protein molecule alteration; C-to-U RNA editing, specifically, is important in the regulation of mammalian genetic diversity. The ability to define and limit accesses of enzymatic machinery to avoid the modification of unintended targets is key to the success of RNA editing. Identification of the core component of the apoB RNA editing holoenzyme, APOBEC, and investigation into new candidate genes encoding other elements of the complex could reveal further details regarding APOBEC-mediated mRNA editing.

View Article and Find Full Text PDF

Background: The sustained activation of androgen receptor splice variant-7 (AR-V7) is a key factor in the resistance of castration-resistant prostate cancer (CRPC) to second-generation anti-androgens such as enzalutamide (ENZ). The AR/AR-V7 protein is regulated by the E3 ubiquitin ligase STUB1 and a complex involving HSP70, but the precise mechanism remains unclear.

Methods: High-throughput RNA sequencing was used to identify differentially expressed circular RNAs (circRNAs) in ENZ-resistant and control CRPC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!