Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087090PMC
http://dx.doi.org/10.18632/aging.205680DOI Listing

Publication Analysis

Top Keywords

ginsenoside rb1
44
cell proliferation
16
network pharmacology
12
pharmacology experimental
12
vascular cell
12
ginsenoside
11
rb1
11
anti-atherosclerosis mechanism
8
mechanism ginsenoside
8
rb1 integrating
8

Similar Publications

Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K.

Int J Biol Macromol

December 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).

View Article and Find Full Text PDF

Background: Rotator cuff tears (RCTs) are among the most common musculoskeletal disorders that affect quality of life. This study aimed to investigate the efficacy of ginsenoside Rb1 in RCTs and the mechanisms involved.

Methods: First, a fibrotic model of FAPs was induced, and FAPs were cultured in media supplemented with different concentrations of ginsenoside Rb1.

View Article and Find Full Text PDF

Immobilization of snailase on glutamate modified MIL-88B(Fe) to efficiently convert the rare ginsenoside CK with high enzyme recyclability and stability.

Int J Biol Macromol

November 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

The carboxyl groups on MIL-88B(Fe) are crucial for the covalent immobilization of snailase, and the enzyme can convert common ginsenoside Rb1 into the rare ginsenoside compound K (CK) with higher bioavailability. The present study proposed glutamate-modified MIL-88B(Fe) for the immobilization of snailase to improve enzymatic activity and loading capacity. The surface topography characterized by SEM and CLSM indicated snailase was successfully encapsulated and uniformly distributed in the Sna@MIL-88B(Fe).

View Article and Find Full Text PDF
Article Synopsis
  • * Ginsenosides like Rb, Rd, Rg, and Rh show anti-inflammatory and anti-tumor effects, and research indicates PDs can inhibit HCC development by targeting multiple signaling pathways.
  • * This review explores the anti-HCC effects of PDs, their mechanisms, and highlights the necessity for further studies to optimize PDs for safe and effective clinical use.
View Article and Find Full Text PDF

Cardiovascular and cerebrovascular diseases (CCVDs), which are circulatory system diseases caused by heart defects and vascular diseases, are the major noncommunicable diseases affecting global public health. With the improvement of economic level and the change of human lifestyle, the prevalence of CCVDs continues to increase. ( C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!