Manipulating the three-dimensional (3D) structures of cells is important for facilitating to repair or regenerate tissues. A self-assembly system of cells with cellulose nanofibers (CNFs) and concentrated polymer brushes (CPBs) has been developed to fabricate various cell 3D structures. To further generate tissues at an implantable level, it is necessary to carry out a large number of experiments using different cell culture conditions and material properties; however this is practically intractable. To address this issue, we present a graph-neural network-based simulator (GNS) that can be trained by using assembly process images to predict the assembly status of future time steps. A total of 24 (25 steps) time-series images were recorded (four repeats for each of six different conditions), and each image was transformed into a graph by regarding the cells as nodes and the connecting neighboring cells as edges. Using the obtained data, the performances of the GNS were examined under three scenarios (i.e., changing a pair of the training and testing data) to verify the possibility of using the GNS as a predictor for further time steps. It was confirmed that the GNS could reasonably reproduce the assembly process, even under the toughest scenario, in which the experimental conditions differed between the training and testing data. Practically, this means that the GNS trained by the first 24 h images could predict the cell types obtained 3 weeks later. This result could reduce the number of experiments required to find the optimal conditions for generating cells with desired 3D structures. Ultimately, our approach could accelerate progress in regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.3c01888 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, 11937, Jordan.
Introduction: The beneficial effects of probiotics are encountered by their low viability in gastrointestinal conditions and their insufficient stability during manufacturing, throughut the gastrointestinal transit, and storage. Therefore, novel systems are highly required to improve probiotics delivery.
Methods: In this study, Lactobacillus gasseri (L), Bifidobacterium bifidum (B), and a combination of L+B were encapsulated in chitosan (CS)-polyacrylic acid (PAA) complex systems (CS-PAA).
Sci Rep
January 2025
Finishing of Cellulose-based Fibres Department, National Research Centre, Pretreatment and Textile Research and Technology Institute, 33 El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622, Giza, Egypt.
The study examined the use of cationic polymers (Polyethyleneimine and chitosan) in treating fabrics like cotton, wool, and cotton/wool (70/30) to improve their dyeability and printability. The study examined factors such as dye concentration, time, and temperature for the dyeing process. Results showed that all dyed and printed fabrics treated with polyethyleneimine and chitosan increased color strength by significant percentages.
View Article and Find Full Text PDFNat Commun
January 2025
School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India. Electronic address:
The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.
View Article and Find Full Text PDFTalanta
January 2025
School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China. Electronic address:
Colorimetric detection of pathogenic bacteria (such as S. aureus) in complex sample confronts challenges regarding sensitivity, selectivity, and accuracy. In this paper, a magnetic field facilitated (MFF)-colorimetric aptasensor was proposed for S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!