In Situ Nanofiber Formation Blocks AXL and GAS6 Binding to Suppress Ovarian Cancer Development.

Adv Mater

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.

Published: May 2024

Anexelekto (AXL) is an attractive molecular target for ovarian cancer therapy because of its important role in ovarian cancer initiation and progression. To date, several AXL inhibitors have entered clinical trials for the treatment of ovarian cancer. However, the disadvantages of low AXL affinity and severe off-target toxicity of these inhibitors limit their further clinical applications. Herein, by rational design of a nonapeptide derivative Nap-Phe-Phe-Glu-Ile-Arg-Leu-Arg-Phe-Lys (Nap-IR), a strategy of in situ nanofiber formation is proposed to suppress ovarian cancer growth. After administration, Nap-IR specifically targets overexpressed AXL on ovarian cancer cell membranes and undergoes a receptor-instructed nanoparticle-to-nanofiber transition. In vivo and in vitro experiments demonstrate that in situ formed Nap-IR nanofibers efficiently induce apoptosis of ovarian cancer cells by blocking AXL activation and disrupting subsequent downstream signaling events. Remarkably, Nap-IR can synergistically enhance the anticancer effect of cisplatin against HO8910 ovarian tumors. It is anticipated that the Nap-IR can be applied in clinical ovarian cancer therapy in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202308504DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
32
ovarian
9
situ nanofiber
8
nanofiber formation
8
suppress ovarian
8
cancer
8
cancer therapy
8
axl
6
nap-ir
5
formation blocks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!