Objective: Gastric cancer (GC) is one of the most common malignancies and ranks third in terms of cancer-related mortality. This study aims to identify the hub genes and potential mechanisms in GC using a bioinformatics approach.
Methods: Microarray data GSE54129, GSE79973, GSE55696 were extracted from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) was identified using Benjamini-Hochberg method in the limma package. GO and KEGG pathway enrichment analyses of the DEGs were conducted. Furthermore, protein-protein interaction network was constructed the STRING platform, and the hub genes were discovered using Maximal Clique Centrality method via cytoHubba. The predictive significance of hub genes was evaluated through GSE15459 dataset.
Results: A total of 73 genes was identified as DEGs in GC. Volcano plots and heatmaps of DEGs were visualized. Functional enrichment analysis revealed that the genes were mostly enriched in response to xenobiotic stimulus, digestion, cellular hormone metabolic process, extracellular matrix structural constituent, calcium-dependent cysteine-type endopeptidase activity, aromatase activity, apical part of cell, basal part of cell, and apical plasma membrane. Regarding KEGG pathway-enrichment, the genes were mainly involved in Drug metabolism-cytochrome P450, Retinol metabolism, Chemical carcinogenesis-DNA adducts, Gastric acid secretion, and Metabolism of xenobiotics by cytochrome P450. By combining the results of Cytohubba, the top five intersecting genes identified were SPP1, INHBA, MMP7, THBS2 and FAP. Kapplan-Meier analysis results showed that these 5 hub genes were highly related to the overall survival of patients.
Conclusion: SPP1, INHBA, MMP7, THBS2, and FAP were identified as prospective biomarkers and therapeutic targets for GC that might be utilized for prognostic evaluation and scheme selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152393 | PMC |
http://dx.doi.org/10.31557/APJCP.2024.25.3.885 | DOI Listing |
Funct Integr Genomics
January 2025
Intelligent OMICS Limited, Nottingham, United Kingdom.
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
Neuroblastoma (NB) remains associated with high mortality and low initial response rate, especially for high-risk patients, thus warranting exploration of molecular markers for precision risk classifiers. Through integrating multiomics profiling, we identified a range of hub genes involved in cell cycle and associated with dismal prognosis and malignant cells. Single-cell transcriptome sequencing revealed that a subset of malignant cells, subcluster 1, characterized by high proliferation and dedifferentiation, was strongly correlated with the hub gene signature and orchestrated an immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America.
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system.
View Article and Find Full Text PDFPLoS Pathog
January 2025
National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!