Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated ketones a hydrogenation/isomerization cascade.

Chem Commun (Camb)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Published: April 2024

Ru-catalyzed asymmetric hydrogenation of α-substituted α,β-unsaturated ketones has been developed for the enantioselective synthesis of chiral α-substituted secondary alcohols with high diastereo- and enantioselectivities (up to >99 : 1 dr, 98% ee). Mechanistic experiments suggest that the reaction proceeds a Ru-catalyzed asymmetric hydrogenation of the CO bond in concert with a base-promoted allylic alcohol isomerization, and the final stereoselectivities were controlled by a DKR process during the asymmetric hydrogenation of the ketone intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc00356jDOI Listing

Publication Analysis

Top Keywords

asymmetric hydrogenation
16
ru-catalyzed asymmetric
12
αβ-unsaturated ketones
8
hydrogenation
4
hydrogenation αβ-unsaturated
4
ketones hydrogenation/isomerization
4
hydrogenation/isomerization cascade
4
cascade ru-catalyzed
4
hydrogenation α-substituted
4
α-substituted αβ-unsaturated
4

Similar Publications

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

A novel mechanism for -heteroaryl C-H functionalization via dearomative addition-hydrogen autotransfer is described. Upon exposure to the catalyst derived from RuHCl(CO)(PPh) and Xantphos, dienes - suffer hydroruthenation to form allylruthenium nucleophiles that engage in -heteroaryl addition-β-hydride elimination to furnish branched products of C-C coupling - and -. Oxidative cleavage of isoprene adducts , , , and followed by ruthenium-catalyzed dynamic kinetic asymmetric ketone reduction provides enantiomerically enriched -heteroarylethyl alcohols - and, therefrom, -heteroarylethyl amines -.

View Article and Find Full Text PDF

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!