Research into nanomaterials yields numerous exceptional applications in contemporary science and technology. The subject of this investigation is a one-dimensional nanostructure, six atoms wide, featuring hydrogen-functionalized edges. The theoretical foundation of this study relies on Density Functional Theory (DFT) and is executed through the utilization of the Vienna Ab initio Simulation Package (VASP). The outcomes demonstrate the stability of adsorption configurations, along with the preservation of a hexagonal honeycomb lattice. The pristine configuration, characterized by a wide bandgap, is well-suited for optoelectronic applications, whereas adsorption configurations find their application in gas sensing. Nitrogen (N) adsorption transforms the semiconducting system into a semimetallic one, with the spin-up state showing semiconductor characteristics and the spin-down state exhibiting metallic attributes. The intricate multi-orbital hybridization is explored through the analysis of partial states. While the pristine system remains non-magnetic, N adsorption introduces a magnetic moment of 0.588 μ. The examination of charge density differences indicates a significant charge transfer from N to the CGe substrate surface. Optical properties are systematically investigated, encompassing the dielectric function, absorption coefficient and electron-hole density. Notably, the real part of the dielectric function exhibits negative values, a result that holds promise for future communication applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966396 | PMC |
http://dx.doi.org/10.1098/rsos.231836 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China.
Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Halide perovskites have emerged as promising materials for a wide variety of optoelectronic applications, including solar cells, light-emitting devices, photodetectors, and quantum information applications. In addition to their desirable optical and electronic properties, halide perovskites provide tremendous synthetic flexibility through variation of not only their chemical composition but also their structure and morphology. At the heart of their use in optoelectronic technologies is the interaction of light with electronic excitations in the form of excitons.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.
Developing miniaturized low-frequency acoustic sensors with high sensitivity is crucial for diverse applications, including geological monitoring and aerospace exploration. However, the performance of low-frequency acoustic sensor is constrained by the limited mechanical robustness of traditional sensing films at nanoscale thickness. Here, a functionalized graphene oxide (GO)-based Fabry-Perot (FP) low-frequency sensor is proposed, with characteristics of compact size, resistance to electromagnetic interference high-sensitivity low minimum detectable pressure (MDP), and a high signal-to-noise ratio (SNR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!