Association of Lung Cancer Risk With the Presence of Both Lung Nodules and Emphysema in a Lung Cancer Screening Trial.

World J Oncol

Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China.

Published: April 2024

Background: The coexistence of emphysema and lung nodules could interact with each other and then lead to potential higher lung cancer risk. The study aimed to explore the association between emphysema combined with lung nodules and lung cancer risk.

Methods: A total of 21,949 participants from the National Lung Screening Trial (NLST) who underwent low-dose computed tomography (LDCT) examination were included. Participants were categorized into four groups (NENN group (non-emphysema and non-nodules), E group (emphysema without nodules), N group (nodules without emphysema), and E + N group (nodules with emphysema)) according to whether there were lung nodules and emphysema. Multivariable Cox regression and stratified analyses were performed to estimate the association between the four groups and lung cancer risk.

Results: Among the 21,949 participants, there were 9,040 (41.2%), 5,819 (26.5%), 4,737 (21.6%), and 2,353 (10.7%) participants in the NENN group, E group, N group, and E + N group. The risk of lung cancer incidence increased in turn in NENN group, E group, N group and E + N group. Compared with NENN group, the age-adjusted hazard ratios (HRs) (95% confidence intervals (CIs)) of lung cancer incidence were 2.07 (1.69 - 2.54) for E group, 4.13 (3.47 - 5.05) for N group, and 6.26 (5.14 - 7.62) for E + N group. The association was robust to adjustment for potential confounders (1.83 (1.47 - 2.27) for E group, 3.97 (3.24 - 4.86) for N group, and 5.23 (4.28 - 6.48) for E + N group). Comparable results as the lung cancer incidence were observed for lung cancer mortality, whether in age-adjusted model (E group: 1.85 (1.39 - 2.46), N group: 2.49 (1.89 - 3.29), E + N group: 4.27 (3.21 - 5.68)) or fully adjusted model (E group: 1.56 (1.15 - 2.11), N group: 2.43 (1.81 - 3.26), E + N group: 3.39 (2.50 - 4.61)). However, the trend of all-cause mortality risk among the four groups was somewhat different from that of lung cancer risk, whether in age-adjusted model (1.37 (1.21 - 1.54) for E group, 1.06 (0.92 - 1.21) for N group, and 1.75 (1.51 - 2.02) for E + N group) or fully adjusted model (1.26 (1.10 - 1.44) for E group, 1.09 (0.94 - 1.27) for N group, and 1.52 (1.30 - 1.79) for E + N group).

Conclusion: Based on a large-scale lung cancer screening trial in the United States, this study demonstrated that either emphysema or lung nodules can increase lung cancer risk, and lung nodules combined with emphysema can further increase the lung cancer risk and all-cause mortality. The significance of these findings for lung cancer screening should be evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965254PMC
http://dx.doi.org/10.14740/wjon1782DOI Listing

Publication Analysis

Top Keywords

lung cancer
56
group
30
lung nodules
24
group group
24
cancer risk
20
lung
20
nodules emphysema
16
emphysema lung
16
nenn group
16
cancer
14

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!