A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic complexity of cassava brown streak disease: insights from qPCR-based viral titer analysis and genome-wide association studies. | LitMetric

Cassava, a vital global food source, faces a threat from Cassava Brown Streak Disease (CBSD). CBSD results from two viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). These viruses frequently pose challenges to the traditional symptom-based 1-5 phenotyping method due to its limitations in terms of accuracy and objectivity. Quantitative polymerase chain reaction (qPCR) offers precise virus quantification, although high costs hinder its widespread adoption. In this research, we utilized qPCR to measure the viral titer/load of CBSV and UCBSV. The objectives were to evaluate titer variability within the Cycle 2 (C2) population in two different environments, establish connections between viral titers and CBSD severity scores from the 1-5 scoring method, perform Genome-Wide Association Studies (GWAS) to identify genomic regions associated with CBSV and UCBSV titers, and investigate the functional annotated genes. The results demonstrated a significantly higher prevalence of CBSV (50.2%) in clones compared to UCBSV (12.9%) with mixed infections in some cases. Genotypic effects, particularly concerning UCBSV, were significant, with genotype-by-environment effects primarily influencing CBSV titer. GWAS Studies identified genomic regions associated with CBSV and UCBSV titers. Twenty-one SNP markers on chromosomes 10, 13, 17, and 18 exhibited significant associations with CBSV titer, collectively explaining 43.14% of the phenotypic variation. Additionally, 25 SNP markers on chromosomes 1, 2, 4, 5, 8, 11, 12, 13, 16, and 18 were associated with UCBSV titer, and explained 70.71% of the phenotypic variation. No shared genomic regions were identified between CBSV and UCBSV viral titers. Gene ontology analysis also revealed diverse gene functions, especially in transport and catalytic activities. These findings enhance our understanding of virus prevalence, genetics, and molecular functions in cassava plants, offering valuable insights for targeted breeding strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965612PMC
http://dx.doi.org/10.3389/fpls.2024.1365132DOI Listing

Publication Analysis

Top Keywords

cassava brown
16
brown streak
16
cbsv ucbsv
16
genomic regions
12
streak disease
8
genome-wide association
8
association studies
8
streak virus
8
cbsv
8
ucbsv
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!