This research work deals with the examination of the techno-economic, exergy, and energy analyses of biomass gasification of the invasive weed (PHP) using Steam - Carbon dioxide (CO) as a gasifying agent with the support of simulation modeling for sustainable energy conversion process. The aim of this work is to simulate the gasification process through consideration of the impacts of various operating factors on gasification. This study attains the gradual increase in hydrogen (H) concentration from 51% to 63% along with the rise in carbon monoxide (CO) from 14.5% to 19% using Aspen Plus simulation. CO falls concurrently from 24% to 13.5%. The findings demonstrate significant advancements over earlier studies in terms of both gas composition and overall system performance. A computational model has been developed for the estimation of energy performance indicators such as total energy input, and energy consumed per mass of biomass gasified, which are used in the determination of the system's energy efficiency. The exergy analysis of the system is performed to assess the system's total losses in terms of efficiency gathered from the system's exergy ratios. The economic analysis evaluates the system's economies of scale by gas production at ₹.15/kg and long-term sustainability. The proposed system has been found with the potential to produce a high yield of alternative energy from PHP with increased economic efficiency and lower environmental impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966595PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e27673DOI Listing

Publication Analysis

Top Keywords

invasive weed
8
gas production
8
energy
7
techno-economic energy
4
exergy
4
energy exergy
4
exergy analyses
4
analyses invasive
4
gasification
4
weed gasification
4

Similar Publications

When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent.

View Article and Find Full Text PDF

Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.

View Article and Find Full Text PDF

Oviposition-deterrent activity of p-methyl benzaldehyde and 2-hydroxy-5-methoxybenzaldehyde from the extract of Periplocae cortex for the control of Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China.

Background: The invasion of Spodoptera frugiperda into China has caused serious losses to the food industry and has developed varying degrees of resistance to various chemical pesticides. Developing new plant-based pesticides is of great significance for the sustainable management of S. frugiperda.

View Article and Find Full Text PDF

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Circulating Adenoid Cystic Carcinoma associated MYB transcripts enable rapid and sensitive detection of metastatic disease in blood liquid biopsies.

J Liq Biopsy

December 2024

Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.

Adenoid cystic carcinoma (ACC) is a rare and lethal malignancy that originates in secretory glands of the head and neck. A prominent molecular feature of ACC is the overexpression of the proto-oncogene MYB. ACC has a poor long-term survival due to its high propensity for recurrence and protracted metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!