Deep learning-based target tracking with X-ray images for radiotherapy: a narrative review.

Quant Imaging Med Surg

Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China.

Published: March 2024

Background And Objective: As one of the main treatment modalities, radiotherapy (RT) (also known as radiation therapy) plays an increasingly important role in the treatment of cancer. RT could benefit greatly from the accurate localization of the gross tumor volume and circumambient organs at risk (OARs). Modern linear accelerators (LINACs) are typically equipped with either gantry-mounted or room-mounted X-ray imaging systems, which provide possibilities for marker-less tracking with two-dimensional (2D) kV X-ray images. However, due to organ overlapping and poor soft tissue contrast, it is challenging to track the target directly and precisely with 2D kV X-ray images. With the flourishing development of deep learning in the field of image processing, it is possible to achieve real-time marker-less tracking of targets with 2D kV X-ray images in RT using advanced deep-learning frameworks. This article sought to review the current development of deep learning-based target tracking with 2D kV X-ray images and discuss the existing limitations and potential solutions. Finally, it also discusses some common challenges and potential future developments.

Methods: Manual searches of the Web of Science, and PubMed, and Google Scholar were carried out to retrieve English-language articles. The keywords used in the searches included "radiotherapy, radiation therapy, motion tracking, target tracking, motion estimation, motion monitoring, X-ray images, digitally reconstructed radiographs, deep learning, convolutional neural network, and deep neural network". Only articles that met the predetermined eligibility criteria were included in the review. Ultimately, 23 articles published between March 2019 and December 2023 were included in the review.

Key Content And Findings: In this article, we narratively reviewed deep learning-based target tracking with 2D kV X-ray images in RT. The existing limitations, common challenges, possible solutions, and future directions of deep learning-based target tracking were also discussed. The use of deep learning-based methods has been shown to be feasible in marker-less target tracking and real-time motion management. However, it is still quite challenging to directly locate tumor and OARs in real-time with 2D kV X-ray images, and more technical and clinical efforts are needed.

Conclusions: Deep learning-based target tracking with 2D kV X-ray images is a promising method in motion management during RT. It has the potential to track the target in real time, recognize motion, reduce the extended margin, and better spare the normal tissue. However, it still has many issues that demand prompt attention, and further development before it can be put into clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963821PMC
http://dx.doi.org/10.21037/qims-23-1489DOI Listing

Publication Analysis

Top Keywords

x-ray images
36
target tracking
28
deep learning-based
24
learning-based target
20
tracking x-ray
16
tracking
10
x-ray
10
deep
9
target
9
images
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!