In the current study, the impact of C-ratio, convective heat transfer coefficient, and free stream temperature on the maximal cell temperature and temperature uniformity was computationally and statistically examined. Results revealed that the free stream temperature was the main influential factor for the maximal cell temperature for both natural and forced convection conditions while the C-ratio was the most effective parameter for the temperature uniformity for both natural and forced convections. On the other hand, the contribution of the free stream temperature to the maximum battery temperature increased from 63% to 94% when the conditions were changed from natural convection to forced convection. Moreover, the contribution of the C-rate to the temperature uniformity decreased from 89% to 79% when the conditions were changed from natural convection to forced convection. The results obtained from this study are significant in terms of determining which factor should be given more importance under natural and forced convection conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965165PMC
http://dx.doi.org/10.55730/1300-0527.3645DOI Listing

Publication Analysis

Top Keywords

forced convection
16
free stream
12
stream temperature
12
temperature uniformity
12
natural forced
12
temperature
9
convective heat
8
heat transfer
8
maximal cell
8
cell temperature
8

Similar Publications

Steam injection, especially in a superheated state, increases the rate of heat transfer and improves the quality of the baked products. In this research, different baking methods (forced convention, superheated steam, and superheated steam-assisted) at different temperatures (140°C, 160°C, 180°C) were applied to produce a new formulated rice cake containing acorn flour and inulin. The findings revealed that the level of moisture inside the oven directly influences the volume of the cake.

View Article and Find Full Text PDF

Nanoporous metals, a class of free-standing, high specific-area materials, evolve from interface-controlled self-organization in a selective dissolution (e.g., dealloying).

View Article and Find Full Text PDF

Thermoelectric Energy Harvesting for Exhaust Waste Heat Recovery: A System Design.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Thermal energy harvesting for high-speed moving objects is particularly promising in providing an efficient and sustainable energy source to enhance operational capabilities and endurance. Thermoelectric (TE) technology, by exploiting temperature gradients between a heat source and ambient temperature, can provide a continuous power supply to such systems, reducing the reliance on conventional batteries and extending operation times. However, the integrated thermoelectric generator (TEG) system design research is far behind materials development.

View Article and Find Full Text PDF

Characteristics of low-temperature oxidative heating and gas production in coal storage under forced convection: Influencing factors and mechanisms.

Sci Total Environ

January 2025

College of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology (Beijing), Beijing 10083, China.

Slow oxidation of coal during storage and transportation poses significant risks, making it essential to identify hot spots and understand the heat generation and gas production patterns in coal stockpiles. This study leverages the advantages of adiabatic oxidation experiments, which account for time effects, to accurately describe the low-temperature oxidation process of coal through warming and gas production dimensions. Additionally, the warming and gas production patterns of three-dimensional coal stockpiles with varying stacking parameters were investigated.

View Article and Find Full Text PDF

This work aims to identify a mechanism of interaction between soil moisture (SM) state and the incidence of weakly forced synoptic scale MCS events during boreal summer by performing a sensitivity study using the Weather Research and Forecasting (WRF) model over the US Great Plains. A uniformly dry SM patch at a 5° × 5° scale is centered at the point of a documented MCS initiation to observe spatiotemporal changes of the simulated MCS events, totaling 97 cases between 2004 and 2017. A storm-centered composite analysis of SM at the location of simulated MCS events depicted SM heterogeneity [O(100) km] structured as significantly drier soils to the southwest (SW) transitioning to wetter soils northeast (NE) of the mean simulated initiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!