Actuator failure on a remotely deployed robot results in decreased efficiency or even renders it inoperable. Robustness to these failures will become critical as robots are required to be more independent and operate out of the range of repair. To address these challenges, we present two approaches based on modular robotic architecture to improve robustness to actuator failure of both fixed-configuration robots and modular reconfigurable robots. Our work uses modular reconfigurable robots capable of modifying their style of locomotion and changing their designed morphology through ejecting modules. This framework improved the distance travelled and decreased the effort to move through the environment of simulated and physical robots. When the deployed robot was allowed to change its locomotion style, it showed improved robustness to actuator failure when compared to a robot with a fixed controller. Furthermore, a robot capable of changing its locomotion and design morphology statistically outlasted both tests with a fixed morphology. Testing was carried out using a gazebo simulation and validated in multiple tests in the field. We show for the first time that ejecting modular failed components can improve the overall mission length.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965784 | PMC |
http://dx.doi.org/10.3389/frobt.2024.1225297 | DOI Listing |
Sensors (Basel)
January 2025
Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea.
Information and communication technology (ICT) components, especially actuators in automated irrigation systems, are essential for managing precise irrigation and optimal soil moisture, enhancing orchard growth and yield. However, actuator malfunctions can lead to inefficient irrigation, resulting in water imbalances that impact crop health and reduce productivity. The objective of this study was to develop a signal processing technique to detect potential malfunctions based on the power consumption level and operating status of actuators for an automated orchard irrigation system.
View Article and Find Full Text PDFISA Trans
January 2025
School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Qingdao Innovation Center of Artificial Intelligence Ocean Technology, Qingdao 266061, China; The Research Institute for Mathematics and Interdisciplinary Sciences, Qingdao University of Science and Technology, Qingdao 266061, China. Electronic address:
This paper considers the event-triggered adaptive fault-tolerant control (FTC) problem for a class of stochastic nonlinear systems suffering from finite number of actuator failures and abrupt system external failure. Unlike existing event-triggered mechanisms (ETMs), this paper proposes an improved switching threshold mechanism (STM) that effectively addresses the potential system security hazards caused by large signal impulses when both the magnitude size of the controller and its rate of change are too large, while also saving energy consumption. Especially, when the occurrence of both actuator failure and system external failure may lead to over-change rate of the controller, by using the multi-dimensional Taylor network (MTN) approximation technique, the adaptive fault-tolerant control scheme designed based on the improved STM not only has lower resource consumption, but also indirectly improves the control performance of the system by ensuring the system security operation.
View Article and Find Full Text PDFClin Lung Cancer
December 2024
Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Medicine, Chicago, IL.
Background: Activating mutations in the epidermal growth factor receptor (EGFR) gene occur in 7% to 23% of patients with non-small-cell lung cancer (NSCLC). A small proportion of these (3-5%) are exon 18 mutations. Neratinib, an irreversible pan-HER tyrosine kinase inhibitor (TKI), had activity in the phase II SUMMIT basket study.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
December 2024
Duke University Medical Center, Durham, North Carolina.
Background: Direct mechanical ventricular actuation (DMVA) with the Anstadt cup is effective for non-blood-contacting biventricular support. Pneumatic regulation of a silicone device augments ventricular pump function. Vacuum attachment facilitates diastolic augmentation critical for biventricular support.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.
In the case of repeated loadings, the reliability of inertial microelectromechanical systems (MEMS) can be linked to failure processes occurring within the movable structure or at the anchors. In this work, possible debonding mechanisms taking place at the interface between the polycrystalline silicon film constituting the movable part of the device and the silicon dioxide at the anchor points are considered. In dealing with cyclic loadings possibly inducing fatigue failure, a strategy is proposed to optimize the geometry of an on-chip testing device designed to characterize the strength of the aforementioned interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!