Removal of toxic Cr(VI) from aqueous medium with effective magnetic carbon-based nanocomposites.

Turk J Chem

Department of Nanotechnology, Nanotechnology and Biotechnology Institute, İstanbul University-Cerrahpaşa, İstanbul, Turkiye.

Published: September 2023

Cr(VI), which has toxic effects, is a heavy metal and it must be removed from the environment due to the various damages it causes. In this study, the removal of Cr(VI) pollutants from aqueous solutions with FeO-based materials using a batch adsorption technique was investigated. Magnetically modified graphene nanoplatelet (GNP)-based nanocomposites were prepared and their structures were characterized by FTIR, XRD, SEM, BET, and TGA techniques. The effects of various physicochemical parameters such as adsorbent dose, contact time, initial Cr(VI) solution concentration, pH, and the presence of coexisting ions (NaCl) on the adsorption process were investigated. Accordingly, the optimum conditions for Cr(VI) removal were determined. Nonlinear Langmuir, Freundlich, and Temkin isotherm models and pseudo-first-order, pseudo-second-order, and Bangham kinetic models were used to investigate the adsorption mechanism. The experimental data relatively fit the second-order kinetic model and the Freundlich isotherm model. The maximum adsorption capacities for pure FeO (Fe:GNP 1:0), Fe:GNP (2:1), and Fe:GNP (1:1) nanocomposite materials at 298 K and pH of approximately 5 were obtained as 12.71 mg/g, 27.03 mg/g, and 62.27 mg/g, respectively. This result showed that Cr(VI) removal increased as the amount of GNP in the composite material increased. Generally, the results confirmed that magnetically modified GNP-based adsorbents are functional and promising materials that can be used for the removal of pollutants such as Cr(VI) from aqueous media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965192PMC
http://dx.doi.org/10.55730/1300-0527.3629DOI Listing

Publication Analysis

Top Keywords

crvi aqueous
8
magnetically modified
8
crvi removal
8
fegnp fegnp
8
crvi
7
removal
5
removal toxic
4
toxic crvi
4
aqueous medium
4
medium effective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!