Photophysical, thermal, and DFT studies on a tetraaryl-azadipyrromethene ligand and its zinc(II) complex.

Turk J Chem

Department of Chemistry, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkiye.

Published: October 2023

An azadipyrromethene ligand () and homoleptic zinc(II) () complex were synthesized. The resulting structures were elucidated by NMR, FTIR, and HRMS techniques. The photophysical properties and effects of complexing the zinc(II) atom to azadipyrromethene ligands in solution were studied by means of UV-Vis absorption and fluorescence spectroscopy. Experimental findings were elucidated using density functional theory computations and interfragment charge transfer (IFCT) and electron-hole analyses. The fluorescence features were found to be negligible. The ligand molecule decayed at a rate of 3% while the complex decayed at 2% upon photoirradiation based on photostability experiments. The singlet oxygen quantum yields of the ligand and complex were calculated as 0.127 and 0.233, respectively, signifying low photodynamic activity. The charge transfer transitions were determined between reciprocal ligands responsible for the red shift of the main absorption band by IFCT and electron-hole analysis. Compounds in an inert N atmosphere demonstrated high thermal stability. Although the thermogravimetric analysis (TGA) and derivative thermogravimetry curves of the complexes were similar, zinc(II) coordination and homoleptic complex formation reduced the degradation temperatures. These findings suggest that azadipyrromethene and the Zn(II) class of chromophores have beneficial features for use in the development of novel photo- and thermostable materials that combine charge transfer with low energy in the visible and near infrared regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965187PMC
http://dx.doi.org/10.55730/1300-0527.3626DOI Listing

Publication Analysis

Top Keywords

charge transfer
12
zincii complex
8
ifct electron-hole
8
complex
5
photophysical thermal
4
thermal dft
4
dft studies
4
studies tetraaryl-azadipyrromethene
4
ligand
4
tetraaryl-azadipyrromethene ligand
4

Similar Publications

Molecular Uranium Dioxide-Mediated CO Photoreduction.

J Am Chem Soc

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).

View Article and Find Full Text PDF

For paediatric patients suffering from neurofibromatosis, Selumetinib (SEL) is the only approved drug. Here an original ecofriendly and high pace method is introduced using 96- microwell spectrophotometric assay (MW-SPA) to measure SEL content in bulk and commercial pharmaceutical formulation (Koselugo capsules). This assay was relied on in-microwell formation of a coloured charge transfer complex (CTC) upon interaction of SEL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).

View Article and Find Full Text PDF

In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.

View Article and Find Full Text PDF

Confinement-induced Ni-based MOF formed on TiCT MXene support for enhanced capacitive deionization of chromium(VI).

Sci Rep

January 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.

MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.

View Article and Find Full Text PDF

A particle current generated by pumping in the absence of gradients in potential energy, density or temperature is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect and the quantum anomalous Hall effect. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!