In this work, detailed experimental proof and in-depth analysis of the singlet fission (SF) mechanism, operative in fluorene-based small molecules, are carried out by employing advanced time-resolved spectroscopies with nanosecond and femtosecond resolution. The investigation of the effect of solution concentration and solvent viscosity together with temperature and excitation wavelength demonstrates INTRAmolecular formation of the correlated triplet pair followed by INTERmolecular independent triplet separation via a "super-diffusional" triplet-triplet transfer process. This unconventional INTRA- to INTERmolecular SF may be considered an "ideal" mechanism. Indeed, intramolecular formation of the correlated triplet pair is here interestingly proved for small molecules rather than large multichromophoric systems, allowing easy synthesis and processability while maintaining good control over the SF process. On the other hand, the intermolecular triplet separation may be exploited to achieve high triplet quantum yields in these new SF small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c00194DOI Listing

Publication Analysis

Top Keywords

small molecules
16
triplet separation
12
singlet fission
8
intermolecular triplet
8
achieve high
8
high triplet
8
fluorene-based small
8
intramolecular formation
8
formation correlated
8
correlated triplet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!