Enhanced CO Electroreduction to Multi-Carbon Products on Copper via Plasma Fluorination.

Adv Sci (Weinh)

Research Center for Industries of the Future (RCIF), School of Engineering and Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.

Published: June 2024

The electroreduction of carbon dioxide (CO) to multi-carbon (C) compounds offers a viable approach for the up-conversion of greenhouse gases into valuable fuels and feedstocks. Nevertheless, current industrial applications face limitations due to unsatisfactory conversion efficiency and high overpotential. Herein, a facile and scalable plasma fluorination method is reported. Concurrently, self-evolution during CO electroreduction is employed to control the active sites of Cu catalysts. The copper catalyst modified with fluorine exhibits an impressive C Faradaic efficiency (FE) of 81.8% at a low potential of -0.56 V (vs a reversible hydrogen electrode) in an alkaline flow cell. The presence of modified fluorine leads to the exposure and stabilization of high-activity Cu species, enhancing the adsorption of *CO intermediates and the generation of *CHO, facilitating the subsequent dimerization. This results in a notably improved conversion efficiency of 13.1% and a significant reduction in the overpotential (≈100 mV) for the C products. Furthermore, a superior C FE of 81.6% at 250 mA cm, coupled with an energy efficiency of 31.0%, can be achieved in a two-electrode membrane electrode assembly electrolyzer utilizing the fluorine-modified copper catalyst. The strategy provides novel insights into the controllable electronic modification and surface reconstruction of electrocatalysts with practical potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165481PMC
http://dx.doi.org/10.1002/advs.202309963DOI Listing

Publication Analysis

Top Keywords

plasma fluorination
8
conversion efficiency
8
copper catalyst
8
modified fluorine
8
enhanced electroreduction
4
electroreduction multi-carbon
4
multi-carbon products
4
products copper
4
copper plasma
4
fluorination electroreduction
4

Similar Publications

The main protease M is a clinically validated target to treat infections by the coronavirus SARS-CoV-2. Among the first reported M inhibitors was the peptidomimetic α-ketoamide , whose cocrystal structure with M paved the way for multiple lead-finding studies. We established structure-activity relationships for the series by modifying residues at the P1', P3, and P4 sites.

View Article and Find Full Text PDF

Eukaryotic plasma membranes exhibit nanoscale lateral lipid heterogeneity, a feature that is thought to be central to their function. Studying these heterogeneities is challenging since few biophysical methods are capable of detecting domains at submicron length scales. We recently showed that cryogenic electron microscopy (cryo-EM) can directly image nanoscale liquid-liquid phase separation in extruded liposomes due to its ability to resolve the intrinsic thickness and electron density differences of ordered and disordered phases.

View Article and Find Full Text PDF

Assessment of Cytotoxicity and Genotoxicity of Plasma-Treated Perfluorooctanesulfonate Containing Water Using In Vitro Bioassays.

Toxics

December 2024

Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.

The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon-fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for PFAS removal from water are desperately needed.

View Article and Find Full Text PDF

A Study of Reverse Characteristics of GaN-on-Si Quasi-Vertical PiN Diode with Beveled Sidewall and Fluorine Plasma Treatment.

Micromachines (Basel)

November 2024

State Key Discipline Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

In this work, we show a high-performance GaN-on-Si quasi-vertical PiN diode based on the combination of beveled sidewall and fluorine plasma treatment (BSFP) by an inductively coupled plasma (ICP) system. The leakage current and breakdown voltage of the diode are systematically studied. Due to the beveled sidewall treated by the fluorine plasma, the diodes achieve an excellent breakdown voltage (V) of 790 V and a low reverse leakage current.

View Article and Find Full Text PDF

Inductively coupled plasma-reactive etching (ICP-RIE) of InGaZnO (IGZO) thin films was studied with variations in gas mixtures of hydrochloride (HCl) and argon (Ar). The dry etching characteristics of the IGZO films were investigated according to radiofrequency bias power, gas mixing ratio, and chamber pressure. The IGZO film showed an excellent etch rate of 83.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!