A Sub-Picoampere Measurement Algorithm for Use in Dosimetry of Time-Varying Radiation Fields.

Sensors (Basel)

Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, Św. A. Boboli 8, 02-525 Warsaw, Poland.

Published: March 2024

Dosimetry based on gas detectors operating in the recombination and saturation region provides unique research opportunities but requires high-quality electrometers with a measuring range below 1 pA (10 A). The standard approach in electrometry is to strive to increase the accuracy and precision of the measurement, ignoring the importance of its duration. The article presents an algorithm for the measurement of low current values (from 100 fA) that allows both a fast measurement (with a step of 2.3 ms) and high accuracy (measurement error below 0.1%), depending on the measurement conditions and the expected results. A series of tests and validations of the algorithm were carried out in a measurement system with a Keithley 6517B electrometer and a REM-2 recombination chamber under conditions of constant and time-varying radiation fields. The result of the work is a set of parameters that allow for the optimisation of the operation of the algorithm, maximising the quality of the measurements according to needs and the expected results. The algorithm can be used in low current measurement systems, e.g., for dosimetry of mixed radiation fields using recombination methods and chambers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975528PMC
http://dx.doi.org/10.3390/s24062012DOI Listing

Publication Analysis

Top Keywords

radiation fields
12
time-varying radiation
8
low current
8
measurement
7
algorithm
5
sub-picoampere measurement
4
measurement algorithm
4
algorithm dosimetry
4
dosimetry time-varying
4
fields dosimetry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!