A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Damage Detection in Glass Fibre Composites Using Cointegrated Hyperspectral Images. | LitMetric

Damage Detection in Glass Fibre Composites Using Cointegrated Hyperspectral Images.

Sensors (Basel)

Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Krakow, Poland.

Published: March 2024

Hyperspectral imaging (HSI) is a remote sensing technique that has been successfully applied for the task of damage detection in glass fibre-reinforced plastic (GFRP) materials. Similarly to other vision-based detection methods, one of the drawbacks of HSI is its susceptibility to the lighting conditions during the imaging, which is a serious issue for gathering hyperspectral data in real-life scenarios. In this study, a data conditioning procedure is proposed for improving the results of damage detection with various classifiers. The developed procedure is based on the concept of signal stationarity and cointegration analysis, and achieves its goal by performing the detection and removal of the non-stationary trends in hyperspectral images caused by imperfect lighting. To evaluate the effectiveness of the proposed method, two damage detection tests have been performed on a damaged GFRP specimen: one using the proposed method, and one using an established damage detection workflow, based on the works of other authors. Application of the proposed procedure in the processing of a hyperspectral image of a damaged GFRP specimen resulted in significantly improved accuracy, sensitivity, and F-score, independently of the type of classifier used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975694PMC
http://dx.doi.org/10.3390/s24061980DOI Listing

Publication Analysis

Top Keywords

damage detection
20
detection glass
8
hyperspectral images
8
proposed method
8
damaged gfrp
8
gfrp specimen
8
detection
6
damage
5
hyperspectral
5
glass fibre
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!