Surface crack detection is an integral part of infrastructure health surveys. This work presents a transformative shift towards rapid and reliable data collection capabilities, dramatically reducing the time spent on inspecting infrastructures. Two unmanned aerial vehicles (UAVs) were deployed, enabling the capturing of images simultaneously for efficient coverage of the structure. The suggested drone hardware is especially suitable for the inspection of infrastructure with confined spaces that UAVs with a broader footprint are incapable of accessing due to a lack of safe access or positioning data. The collected image data were analyzed using a binary classification convolutional neural network (CNN), effectively filtering out images containing cracks. A comparison of state-of-the-art CNN architectures against a novel CNN layout "CrackClassCNN" was investigated to obtain the optimal layout for classification. A Segment Anything Model (SAM) was employed to segment defect areas, and its performance was benchmarked against manually annotated images. The suggested "CrackClassCNN" achieved an accuracy rate of 95.02%, and the SAM segmentation process yielded a mean Intersection over Union (IoU) score of 0.778 and an F1 score of 0.735. It was concluded that the selected UAV platform, the communication network, and the suggested processing techniques were highly effective in surface crack detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975019PMC
http://dx.doi.org/10.3390/s24061936DOI Listing

Publication Analysis

Top Keywords

surface crack
12
unmanned aerial
8
crack detection
8
deep learning
4
learning approach
4
approach surface
4
crack classification
4
classification segmentation
4
segmentation unmanned
4
aerial vehicle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!