Playing Flappy Bird Based on Motion Recognition Using a Transformer Model and LIDAR Sensor.

Sensors (Basel)

Institute of Computer Technologies and Informatics, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, J. Herdu 2, 917 01 Trnava, Slovakia.

Published: March 2024

A transformer neural network is employed in the present study to predict Q-values in a simulated environment using reinforcement learning techniques. The goal is to teach an agent to navigate and excel in the Flappy Bird game, which became a popular model for control in machine learning approaches. Unlike most top existing approaches that use the game's rendered image as input, our main contribution lies in using sensory input from LIDAR, which is represented by the ray casting method. Specifically, we focus on understanding the temporal context of measurements from a ray casting perspective and optimizing potentially risky behavior by considering the degree of the approach to objects identified as obstacles. The agent learned to use the measurements from ray casting to avoid collisions with obstacles. Our model substantially outperforms related approaches. Going forward, we aim to apply this approach in real-world scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975254PMC
http://dx.doi.org/10.3390/s24061905DOI Listing

Publication Analysis

Top Keywords

ray casting
12
flappy bird
8
measurements ray
8
playing flappy
4
bird based
4
based motion
4
motion recognition
4
recognition transformer
4
transformer model
4
model lidar
4

Similar Publications

This article shows the results of research conducted on the corrosion resistance of the FeAl (Fe40Al5Cr0.2TiB) alloy in two variants: the alloy after casting and after homogenization annealing (1000 °C, 93 h). Analysis of the microstructure of these alloys was conducted on the light microscope, and the phase composition was determined by X-ray diffraction.

View Article and Find Full Text PDF

Steel Ball Impact on SiC/AlSi12 Interpenetrated Composite by Peridynamics.

Materials (Basel)

January 2025

CT-Lab UG (Haftungsbeschränkt), Nobelstr. 15, 70569 Stuttgart, Germany.

Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure.

View Article and Find Full Text PDF

Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.

View Article and Find Full Text PDF

This study evaluates the properties of starch/chitosan films (SCF) produced via the casting method, incorporating 40 % (w/w) plasticizers (glycerol and sorbitol) and various concentrations (0, 3, 5, and 10 % (w/w)) of nanoclays (Cloisite 20A, Cloisite 30B, and K-10). The effects of each nanofiller on the films were thoroughly investigated. Films containing nanoclays exhibited reduced water solubility and enhanced thermal stability compared to films without nanofillers.

View Article and Find Full Text PDF

Yam starch-based sustainable edible films loaded with bioactive components from aroeira leaf extract: Mechanical, physical, and antioxidant properties.

Int J Biol Macromol

January 2025

Graduate Program in Food Science and Technology, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil; Department of Consumer Sciences, Rural Federal University of Pernambuco, Recife, PE, Brazil. Electronic address:

This study aimed to investigate the impact of adding aroeira leaf extract (Schinus terebinthifolius Raddi) to a yam starch film matrix, focusing on the development of potentially active films and the evaluation of their physicochemical, mechanical, optical, and antioxidant properties. Films were produced using the casting method with varying extract concentrations (0, 3, 6, 12, and 15 %), yam starch (2 %), and glycerol (1 %). The antioxidant properties were analyzed by determining the total phenolic content, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) radical scavenging, ferric reducing power, and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical elimination, which revealed a significant increase in antioxidant properties as the extract concentration increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!