A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expanding Sparse Radar Depth Based on Joint Bilateral Filter for Radar-Guided Monocular Depth Estimation. | LitMetric

Expanding Sparse Radar Depth Based on Joint Bilateral Filter for Radar-Guided Monocular Depth Estimation.

Sensors (Basel)

Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium.

Published: March 2024

Radar data can provide additional depth information for monocular depth estimation. It provides a cost-effective solution and is robust in various weather conditions, particularly when compared with lidar. Given the sparse and limited vertical field of view of radar signals, existing methods employ either a vertical extension of radar points or the training of a preprocessing neural network to extend sparse radar points under lidar supervision. In this work, we present a novel radar expansion technique inspired by the joint bilateral filter, tailored for radar-guided monocular depth estimation. Our approach is motivated by the synergy of spatial and range kernels within the joint bilateral filter. Unlike traditional methods that assign a weighted average of nearby pixels to the current pixel, we expand sparse radar points by calculating a confidence score based on the values of spatial and range kernels. Additionally, we propose the use of a range-aware window size for radar expansion instead of a fixed window size in the image plane. Our proposed method effectively increases the number of radar points from an average of 39 points in a raw radar frame to an average of 100 K points. Notably, the expanded radar exhibits fewer intrinsic errors when compared with raw radar and previous methodologies. To validate our approach, we assess our proposed depth estimation model on the nuScenes dataset. Comparative evaluations with existing radar-guided depth estimation models demonstrate its state-of-the-art performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975743PMC
http://dx.doi.org/10.3390/s24061864DOI Listing

Publication Analysis

Top Keywords

depth estimation
20
radar points
16
radar
12
sparse radar
12
joint bilateral
12
bilateral filter
12
monocular depth
12
radar-guided monocular
8
radar expansion
8
spatial range
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!