The result of the multidisciplinary collaboration of researchers from different areas of knowledge to validate a solar radiation model is presented. The MAPsol is a 3D local-scale adaptive solar radiation model that allows us to estimate direct, diffuse, and reflected irradiance for clear sky conditions. The model includes the adaptation of the mesh to complex orography and albedo, and considers the shadows cast by the terrain and buildings. The surface mesh generation is based on surface refinement, smoothing and parameterization techniques and allows the generation of high-quality adapted meshes with a reasonable number of elements. Another key aspect of the paper is the generation of a high-resolution digital elevation model (DEM). This high-resolution DEM is constructed from LiDAR data, and its resolution is two times more accurate than the publicly available DEMs. The validation process uses direct and global solar irradiance data obtained from pyranometers at the University of Salamanca located in an urban area affected by systematic shading from nearby buildings. This work provides an efficient protocol for studying solar resources, with particular emphasis on areas of complex orography and dense buildings where shadows can potentially make solar energy production facilities less efficient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975035PMC
http://dx.doi.org/10.3390/s24061823DOI Listing

Publication Analysis

Top Keywords

solar radiation
12
radiation model
12
local-scale adaptive
8
adaptive solar
8
high-resolution digital
8
digital elevation
8
elevation model
8
complex orography
8
solar
6
model
6

Similar Publications

In light of the increasingly pressing energy and environmental challenges, the use of photocatalysis to convert solar energy into chemical energy has emerged as a promising solution. Halide perovskites have recently attracted considerable interest as photocatalysts due to their outstanding properties. Early developments focused on Lead-based perovskites, but their use has been severely restricted due to the toxicity of Lead.

View Article and Find Full Text PDF

This paper presents an open-source dataset intended to enhance the analysis and optimization of photovoltaic (PV) power generation in urban environments, serving as a valuable resource for various applications in solar energy research and development. The dataset comprises measured PV power generation data and corresponding on-site weather data gathered from 60 grid-connected rooftop PV stations in Hong Kong over a three-year period (2021-2023). The PV power generation data was collected at 5-minute intervals at the inverter-level.

View Article and Find Full Text PDF

Solar-driven production of renewable chemicals via biomass hydrogenation with green methanol.

Nat Commun

January 2025

School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.

Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.

View Article and Find Full Text PDF

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!