Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session8saotvb512gnakb193ije3ivc6tfpdqn): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to improve the real-time performance of gesture recognition by a micro-Doppler map of mmWave radar, the point cloud based gesture recognition for mmWave radar is proposed in this paper. Two steps are carried out for mmWave radar-based gesture recognition. The first step is to estimate the point cloud of the gestures by 3D-FFT and the peak grouping. The second step is to train the TRANS-CNN model by combining the multi-head self-attention and the 1D-convolutional network so as to extract the features in the point cloud data at a deeper level to categorize the gestures. In the experiments, TI mmWave radar sensor IWR1642 is used as a benchmark to evaluate the feasibility of the proposed approach. The results show that the accuracy of the gesture recognition reaches 98.5%. In order to prove the effectiveness of our approach, a simply 2Tx2Rx radar sensor is developed in our lab, and the accuracy of recognition reaches 97.1%. The results show that our proposed gesture recognition approach achieves the best performance in real time with limited training data in comparison with the existing methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974769 | PMC |
http://dx.doi.org/10.3390/s24061800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!