A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Study of Vibration Response in Steel and Braided-Carbon-Fiber Bicycle Handlebars: A Numerical-Experimental Approach with Various Sensors. | LitMetric

The comfort and safety of a cyclist are directly influenced by the vibrational behavior of the handlebar. Hence, the objective of this article is to comparatively assess the vibrational characteristics of two bicycle handlebars: one made of steel and the other made of braided composite material. The transmissibility function represents the relationship between the excitation applied to both handlebars through their stems and the corresponding response in the handle area, which was experimentally obtained by applying a random vibrating signal (constant amplitude of 0.01 g/Hz) using a shaker. This signal was applied in a frequency range between 100 Hz and 1200 Hz, and the response was measured at one of the two cantilevered ends of the handlebar. Different sensors, including a laser vibrometer and a control accelerometer in the shaker, were utilized. The transmissibility, natural frequencies and damping functions were obtained. Subsequently, another experimental analysis was carried out with the instrumented handlebars mounted on a bicycle, placing three accelerometers and a GPS meter and traveling through a real test circuit, with a rough surface, speed bumps and areas with shaped warning bands. Power Spectral Density (PSD) curves were obtained for the steel and carbon-fiber-composite handlebars in order to quantify the signal intensity. Finally, a fatigue analysis was carried out in order to evaluate the expected life of both handlebars under the experimentally applied load, which is considered the reference cycle. This study offers a comparative analysis of the vibration behavior exhibited by steel and carbon-fiber-composite bicycle handlebars under experimentally applied load. In conclusion, data on natural frequencies, damping functions and fatigue life expectancy for both handlebar materials were obtained. Our study provides valuable insights into the vibrational behavior and performance characteristics of steel and carbon-fiber-composite bicycle handlebars, contributing to the understanding of their comfort and safety implications for cyclists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975057PMC
http://dx.doi.org/10.3390/s24061767DOI Listing

Publication Analysis

Top Keywords

bicycle handlebars
16
steel carbon-fiber-composite
12
handlebars
8
comfort safety
8
vibrational behavior
8
natural frequencies
8
frequencies damping
8
damping functions
8
analysis carried
8
handlebars experimentally
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!