Tunnel excavation induces the stress redistribution of surrounding rock. In this excavation process, the elastic strain in the rock is quickly released. When the maximum stress on the tunnel lining exceeds the concrete's load-bearing capacity, it causes cracking of the lining. Comprehensive geophysical exploration methods, including seismic computerized tomography, the high-density electrical method, and the ultrasonic single-plane test, indicated the presence of incomplete distribution of broken rock along the tunnel axis. Based on the geophysical exploration results, a carbon-fiber-strengthened tunnel simulation model was established to analyze the mechanical characteristics of the structure and provide a theoretical basis for sensor deployment. Fiber Bragg grating (FBG) strain sensors were used to measure the stress and strain changes in the second lining concrete after carbon reinforcement. Meanwhile, one temperature sensor was installed in each section to enable temperature compensation. The monitoring results demonstrated that the stress-strain of the second lining fluctuated within a small range, and the lining did not show any crack expansion behavior, which indicated that carbon-fiber-reinforced polymer (CFRP) played an effective role in controlling the structural deformation. Therefore, the combined detection of physical exploration and FBG sensors for the structure provided an effective monitoring method for evaluating tunnel stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975404 | PMC |
http://dx.doi.org/10.3390/s24061749 | DOI Listing |
J Orthop Case Rep
January 2025
Department of Orthopaedics, Bharatratna Dr. Babasaheb Ambedkar Municipal General Hospital, Mumbai, Maharashtra, India.
Introduction: A form of tenosynovial giant cell tumors (GCTs) that diffusely affects the soft tissue lining of joints and tendons is called pigmented villonodular synovitis or PVNS. About equal percentages of men and women are often affected, and it typically affects young individuals. The most typical sites of PVNS are the knee and ankle, making PVNS of the wrist a rare presentation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Zhejiang Scientific Research Institute of Transport, Hangzhou 311305, China.
As highway tunnel operations continue over time, structural defects, particularly cracks, have been observed to increase annually. Coupled with the rapid expansion of tunnel networks, traditional manual inspection methods have proven inadequate to meet current demands. In recent years, machine vision and deep learning technologies have gained significant attention in civil engineering for the detection and analysis of structural defects.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
Determining the extent of tunnel loosening zones is a crucial factor in establishing reasonable support parameters. Addressing the challenge of testing tunnel loosening zones, this study focused on the Dongmachang Tunnel No. 1.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical and Electrical Engineering, Mianyang Teachers' College, Mianyang, 621000, China.
Investigating the selection of corresponding support methods for tunnel lining structures with different burial depths under landslide loads has strong practical significance. This paper analyzes the influence of anti-slide piles on the lining support of tunnels at different depths through scaling experiments combined with numerical simulation methods. The conclusions of this study are as follows: Under the same anti-slide pile cross-sectional conditions, when the tunnel is at a shallower depth (above the slip surface), due to the influence of the landslide load, a significant bias stress phenomenon occurs in the tunnel lining.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Mountain Bridge and Tunnel Engineering, College of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!