mRNA Therapeutic Vaccine for Hepatitis B Demonstrates Immunogenicity and Efficacy in the AAV-HBV Mouse Model.

Vaccines (Basel)

Infectious Diseases Discovery, Janssen Research & Development, LLC, a Johnson & Johnson Company, 1600 Sierra Point Parkway, Brisbane, CA 94005, USA.

Published: February 2024

AI Article Synopsis

  • Millions of people develop chronic hepatitis B virus (HBV) infections each year, despite available vaccines, due to dysfunctional immune responses in chronic cases.
  • Researchers have created an mRNA vaccine using lipid nanoparticles to target HBV antigens, aiming to elicit a strong immune response in chronic HBV patients.
  • In mouse models, the vaccine showed promising results, inducing strong T cell responses and reducing HBV surface antigens, but did not impact the virus levels in the liver, suggesting the need for further optimization.

Article Abstract

Chronic infection with hepatitis B virus (HBV) develops in millions of patients per year, despite the availability of effective prophylactic vaccines. Patients who resolve acute HBV infection develop HBV-specific polyfunctional T cells accompanied by neutralizing antibodies, while in patients with chronic hepatitis B (CHB), immune cells are dysfunctional and impaired. We describe a lipid nanoparticle (LNP)-formulated mRNA vaccine, optimized for the expression of HBV core, polymerase, and surface (preS2-S) antigens with the aim of inducing an effective immune response in patients with CHB. Prime and prime/boost vaccination with LNP-formulated mRNA encoding for core, pol, and/or preS2-S dosing strategies were compared in naive C57BL/6 and BALB/c mice. Immune responses were assessed by IFN-γ ELISpot, intracellular cytokine staining (ICS), and ELISA for antibody production, whereas anti-viral efficacy was evaluated in the AAV-HBV mouse model. The mRNA vaccine induced strong antigen-specific polyfunctional T cell responses in these mouse models, accompanied by the emergence of anti-HBs and anti-HBe antibodies. After three immunizations, the antigen-specific immune stimulation resulted in up to 1.7 log IU/mL reduction in systemic HBV surface antigen (HBsAg), accompanied by a transient drop in systemic HBeAg, and this was observed in 50% of the AAV-HBV-transduced mice in the absence of additional modalities such as adjuvants, HBsAg reducing agents, or checkpoint inhibitors. However, no treatment-related effect on viremia was observed in the liver. These results warrant further optimization and evaluation of this mRNA vaccine as a candidate in a multimodal therapeutic regimen for the treatment of chronic HBV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976109PMC
http://dx.doi.org/10.3390/vaccines12030237DOI Listing

Publication Analysis

Top Keywords

mrna vaccine
12
aav-hbv mouse
8
mouse model
8
hbv infection
8
lnp-formulated mrna
8
mrna
5
hbv
5
mrna therapeutic
4
vaccine
4
therapeutic vaccine
4

Similar Publications

Modified nucleosides are vital in mRNA vaccines. We developed a contracted uridine analog, N1-hydantoinyl-ribose, HR, using steric shields to invert the regioselectivity of the classic Vorbrüggen reaction. We report synthetic routes and explore HR features such as acidity, stability, base pairing/stacking, and crystal/solution conformation compared to uridine.

View Article and Find Full Text PDF

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.

View Article and Find Full Text PDF

Background Despite ongoing waves of Coronavirus disease 2019 (COVID-19) infections, including significant surges such as the 10th wave, understanding the impact of messenger RNA (mRNA) COVID-19 vaccination on infection risk and associated behavioral changes remains crucial. This study aims to urgently evaluate the effects of mRNA COVID-19 vaccination on COVID-19 infection rates and related behaviors among participants of the Yamato Project, which includes employees of Japanese small and medium-sized enterprises (SMEs). Methods A case-control study was conducted using data collected from a survey administered by the Japan Small and Medium Enterprise Management Council in December 2023.

View Article and Find Full Text PDF

MHCI trafficking signal-based mRNA vaccines strengthening immune protection against RNA viruses.

Bioeng Transl Med

January 2025

Department of Critical Care Medicine Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan China.

The major histocompatibility complex class I (MHCI) trafficking signal (MITD) plays a pivotal role in enhancing the efficacy of mRNA vaccines. However, there was a lack of research investigating its efficacy in enhancing immune responses to RNA virus infections. Here, we have developed an innovative strategy for the formulation of mRNA vaccines.

View Article and Find Full Text PDF

Monocytic reactive oxygen species-induced T cell apoptosis impairs cellular immune response to SARS-CoV-2 mRNA vaccine.

J Allergy Clin Immunol

January 2025

Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:

Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.

Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!