Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC) and 50% inhibitory concentration (IC), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975951 | PMC |
http://dx.doi.org/10.3390/v16030464 | DOI Listing |
Clin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
BMC Vet Res
January 2025
College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
Background: Pseudorabies virus (PRV), porcine parvovirus (PPV) and porcine circovirus 3 (PCV3) are common in swine farms in China. Single infection or co-infection with PRV, PPV and/or PCV3 was difficult to distinguish between their clinical symptoms and pathological changes. Therefore, a quick and accurate detection method is needed for epidemiological surveillance, disease management, import and export control.
View Article and Find Full Text PDFViruses
December 2024
Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.
View Article and Find Full Text PDFPathogens
December 2024
Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
Herpes simplex virus (HSV) in humans and pseudorabies virus (PRV) in pigs are both alphaherpesviruses. Plasmacytoid dendritic cells (pDCs) make part of the peripheral blood mononuclear cells (PBMCs) and are specialized in producing large amounts of antiviral type I interferon (IFN-I). IFN-I production by PBMCs in response to both HSV-1 and PRV can be virtually exclusively attributed to pDCs.
View Article and Find Full Text PDFBiology (Basel)
December 2024
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
The pseudorabies virus (PRV), also known as suid alphaherpesvirus 1 (SuAHV-1), has garnered significant attention due to its broad host range and the economic losses it incurs in the swine industry. This review aims to provide a comprehensive understanding of the intricate virus-host interactions during PRV infection, focusing on the evasion strategies of the virus against the host responses. We also summarize the mechanisms by which PRV manipulates the host cell machinery to facilitate its replication and spread, while simultaneously evading detection and clearance by the immune system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!