The interest in endogenous retroviruses (ERVs) has been fueled by their impact on the evolution of the host genome. In this study, we used multiple pipelines to conduct a de novo exploration and annotation of ERVs in 13 species of the Caprinae subfamily. Through analyses of sequence identity, structural organization, and phylogeny, we defined 28 ERV groups within Caprinae, including 19 gamma retrovirus groups and 9 beta retrovirus groups. Notably, we identified four recent and potentially active groups prevalent in the Caprinae genomes. Additionally, our investigation revealed that most long noncoding genes (lncRNA) and protein-coding genes (PC) contain ERV-derived sequences. Specifically, we observed that ERV-derived sequences were present in approximately 75% of protein-coding genes and 81% of lncRNA genes in sheep. Similarly, in goats, ERV-derived sequences were found in approximately 74% of protein-coding genes and 75% of lncRNA genes. Our findings lead to the conclusion that the majority of ERVs in the Caprinae genomes can be categorized as fossils, representing remnants of past retroviral infections that have become permanently integrated into the genomes. Nevertheless, the identification of the Cap_ERV_20, Cap_ERV_21, Cap_ERV_24, and Cap_ERV_25 groups indicates the presence of relatively recent and potentially active ERVs in these genomes. These particular groups may contribute to the ongoing evolution of the Caprinae genome. The identification of putatively active ERVs in the Caprinae genomes raises the possibility of harnessing them for future genetic marker development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975924 | PMC |
http://dx.doi.org/10.3390/v16030398 | DOI Listing |
Sci Data
November 2024
Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
Tibetan antelope (Pantholops hodgsonii), a wild ruminant endemic to the Qinghai-Tibetan Plateau (QTP) in China, has evolved a series of genetic and physiological adaptation strategies to thrive in the harsh plateau environments. However, limited research on the genome of this species exists. Here, we established a high-quality chromosome-level reference genome assembly of the Tibetan antelope using PacBio HiFi, DNBSEQ, and Hi-C sequencing data.
View Article and Find Full Text PDFChinese serow () is mainly distributed in the south of Yellow River in China, which has been listed as vulnerable by the International Union for Conservation of Nature (IUCN). However, the reference genome of serow has not been reported and its taxonomic status is still unclear. Here, we first constructed a high-quality chromosome-level reference genome of using PacBio long HiFi reads combined with Hi-C technology.
View Article and Find Full Text PDFMicrob Genom
August 2024
Idaho Department of Fish and Game, Lewiston, ID, USA.
is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species.
View Article and Find Full Text PDFNature
August 2024
Globe Institute, University of Copenhagen, Copenhagen, Denmark.
Genetic and fragmented palaeoanthropological data suggest that Denisovans were once widely distributed across eastern Eurasia. Despite limited archaeological evidence, this indicates that Denisovans were capable of adapting to a highly diverse range of environments. Here we integrate zooarchaeological and proteomic analyses of the late Middle to Late Pleistocene faunal assemblage from Baishiya Karst Cave on the Tibetan Plateau, where a Denisovan mandible and Denisovan sedimentary mitochondrial DNA were found.
View Article and Find Full Text PDFYi Chuan
December 2023
College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
Gene chip is a high-throughput technique for detecting specific DNA sequences by DNA or DNA-RNA complementary hybridization, among which SNP genotyping chips have been widely employed in the animal genetics and breeding, and have made great achievements in cattle (Bos taurus), pigs (Sus scrofa), sheep (Caprinae), chickens (Gallus gallus) and other livestock. However, genomic selection applied in production merely uses genomic information and cannot fully explain the molecular mechanism of complex traits genetics, which limits the accuracy of genomic selection. With the continuous progresses in epigenetic research, the development of commercial methylation chips and the application of the epigenome-wide association study (EWAS), DNA methylation has been extensively used to draw the causal connections between genetics and phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!