In this study, the interlaminar fracture toughness and impact strength of polyethersulfone reinforced with continuous carbon fibers were studied. Interlaminar fracture toughness tests were performed using the double cantilever beam method. It was shown that surface modification using the thermal oxidation method of the carbon fibers can strongly increase the interlaminar fracture toughness of the obtained composites. Thus, the maximum value reached 1.72 kJ/m, which was 40% higher than the fracture toughness of the composites reinforced with initial carbon fibers. Moreover, fractographic analysis using a scanning electron microscope allowed us to highlight the main reasons for the dependence of fracture toughness on fiber content and surface modification conditions of the carbon fibers. It was shown that the main factor that allowed for an increase in fracture toughness was the enhanced interfacial interaction between the fibers and polymer matrix. Additionally, it was found that expectedly, there was a good correlation between interlaminar fracture toughness and interlaminar shear strength results. However, a negative influence of surface modification on the impact properties of composites was found. Such behavior occurred because of higher structural stability and lower exposure to delamination in multiple layers of the composites reinforced with the modified carbon fibers. It was found that impact energy reached ~150 kJ/m for the polyethersulfone-based composites reinforced with initial fibers, while the composites reinforced with modified carbon fibers showed impact energy values of only ~80 kJ/m. Nevertheless, surface modification of carbon fibers using the thermal oxidation method can be an effective method for improving the performance properties of polyethersulfone-based composite materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975157PMC
http://dx.doi.org/10.3390/polym16060860DOI Listing

Publication Analysis

Top Keywords

fracture toughness
32
carbon fibers
28
interlaminar fracture
16
surface modification
16
composites reinforced
16
fibers
9
interfacial interaction
8
fracture
8
toughness
8
toughness impact
8

Similar Publications

Exploring the Effects of Ionic Liquid on the Toughness of Palm Leaf Manuscripts.

Langmuir

January 2025

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Palm leaf manuscripts, crafted from specially treated palm leaves, are invaluable historical documents. However, they degrade and tend to become brittle over time. To date, plant essential oils and glycerin are the used materials to improve the flexibility of palm leaf manuscripts, but the effective duration of these materials is short due to their volatility.

View Article and Find Full Text PDF

Preparation and Application of Nature-inspired High-performance Mechanical Materials.

Acta Biomater

January 2025

The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.

Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.

View Article and Find Full Text PDF

Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.

View Article and Find Full Text PDF

Defects can be introduced into shotcrete materials after a few freeze-thaw cycles, which has a significant influence on the fracture performance of shotcrete. In this study, a series of shotcrete specimens with varying sizes, geometries, and initial crack lengths were prepared to investigate the fracture properties of notched shotcrete under freeze-thaw conditions. Considering the effects of specimen boundaries and material microstructure, a linear closed-form solution was proposed to determine the fracture toughness of frost-damaged shotcrete.

View Article and Find Full Text PDF

Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications.

Adv Mater

January 2025

Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.

Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!