AI Article Synopsis

  • Human carbonic anhydrase IX (hCA IX) is an important enzyme involved in converting carbon dioxide and water, predominantly overexpressed in hypoxic tumors, and is targeted by certain drugs for cancer treatment.
  • Researchers are proposing a new drug approach by linking natural cytotoxic substances, betulin and betulinic acid, to existing hCA IX inhibitors (sulfonamides), adjusting linker lengths to optimize targeting and effectiveness.
  • The study shows these new conjugates exhibit effective cytotoxicity against cancer cells in lab tests, significant inhibition of hCA IX activity, and can induce cell death, suggesting a promising strategy for treating tumors associated with hCA IX.

Article Abstract

Human carbonic anhydrase IX (hCA IX) is a zinc(II)-dependent metalloenzyme that plays a critical role in the conversion of carbon dioxide and water to protons and bicarbonate. It is a membrane-bound protein with an extracellular catalytic center that is predominantly overexpressed in solid hypoxic tumors. Sulfamates and sulfonamides, for example acetazolamide (AZA), have been used to inhibit hCA IX in order to improve the response to solid hypoxic tumors. In the present study, we propose a new drug targeting approach by attaching the natural cytotoxic substances betulin and betulinic acid (BA) via a linker to sulfonamides. The conjugate was designed with different spacer lengths to accumulate at the target site of hCA IX. Computational and cell biological studies suggest that the length of the linker may influence hCA IX inhibition. Cytotoxicity tests of the newly synthesized bifunctional conjugates 3, 5, and 9 show effective cytotoxicity in the range of 6.4 and 30.1 µM in 2D and 3D tumor models. The hCA IX inhibition constants of this conjugates, measured using an in vitro enzyme assay with -nitrophenyl acetate, were determined in a low µM-range, and all compounds reveal a significant inhibition of hypoxia-induced CA activity in a cell-based assay using the Wilbur-Anderson method. In addition, the cells respond with G1 increase and apoptosis induction. Overall, the dual strategy to produce cytotoxic tumor therapeutics that inhibit tumor-associated hCA IX was successfully implemented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974084PMC
http://dx.doi.org/10.3390/pharmaceutics16030401DOI Listing

Publication Analysis

Top Keywords

betulinic acid
8
carbonic anhydrase
8
drug targeting
8
targeting approach
8
solid hypoxic
8
hypoxic tumors
8
hca inhibition
8
hca
6
combination betulinic
4
acid fragments
4

Similar Publications

Synthesis and antitumor effects of novel betulinic acid derivatives bearing electrophilic moieties.

Bioorg Med Chem

January 2025

Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China. Electronic address:

Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized.

View Article and Find Full Text PDF

Targeting Pseudomonas aeruginosa PAO1 pathogenicity: The role of Glycyrrhiza glabra in inhibiting virulence factors and biofilms.

Diagn Microbiol Infect Dis

December 2024

Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai 600 077, Tamil Nadu, India. Electronic address:

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen posing serious risks to immunocompromised individuals due to its virulence factors and biofilm formation. This study evaluated the efficacy of methanol extract of Glycyrrhiza glabra (G.

View Article and Find Full Text PDF

Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People's Republic of China.

Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity.

View Article and Find Full Text PDF

Betulin is a bioactive compound found in large quantities in birch bark and has a triterpene pentacyclic structure. Through the oxidation of betulin, betulinic acid is obtained, which is found in large quantities in nature. Betulin and betulinic acid have multiple pharmacological properties such as antiviral, anti-inflammatory, and anticancer properties.

View Article and Find Full Text PDF

The Nipah virus (NiV), a highly pathogenic zoonotic virus of the family, poses significant threats with its alarming mortality rates and pandemic potential. Despite historical cases, effective therapeutics remain elusive, prompting urgent exploration of potential antivirals. In this study, a structure-based virtual screening approach was employed to evaluate 690 metabolites sourced from ten medicinal plants () for their antiviral activity against Nipah virus proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!