Nowadays, the interest in research towards the local administration of drugs via the inhalation route is growing as it enables the direct targeting of the lung tissue, at the same time reducing systemic side effects. This is of great significance in the era of nucleic acid therapeutics and personalized medicine for the local treatment of severe lung diseases. However, the success of any inhalation therapy is driven by a delicate interplay of factors, such as the physiochemical profile of the payload, formulation, inhalation device, aerodynamic properties, and interaction with the lung fluids. The development of drug delivery systems tailored to the needs of this administration route is central to its success and to revolutionize the treatment of respiratory diseases. With this review, we aim to provide an up-to-date overview of advances in the development of nanoparticulate carriers for drug delivery to the lung tissue, with special regard concerning lipid and polymer-based nanocarriers (NCs). Starting from the biological barriers that the anatomical structure of the lung imposes, and that need to be overcome, the current strategies to achieve efficient lung delivery and the best support for the success of NCs for inhalation are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975237PMC
http://dx.doi.org/10.3390/pharmaceutics16030347DOI Listing

Publication Analysis

Top Keywords

lung tissue
8
drug delivery
8
lung
6
state-of-the-art review
4
review inhalable
4
inhalable lipid
4
lipid polymer
4
polymer nanocarriers
4
nanocarriers design
4
design development
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

Interstitial Lung Disease Associated with Anti-Ku Antibodies: A Case Series of 19 Patients.

J Clin Med

January 2025

Department of Respiratory Medicine, National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, European Reference Network (ERN)-LUNG, 28 Avenue Doyen Lepine, 69677 Lyon, France.

Antibodies against Ku have been described in patients with various connective tissue diseases. The objective of this study was to describe the clinical, functional, and imaging characteristics of interstitial lung disease in patients with anti-Ku antibodies. : This single-center, retrospective observational study was conducted at a tertiary referral institution.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!