The aim of this study was to determine the drug loading capacity of phosphatidylcholine-based formulations for four poorly water-soluble drug substances (clofazimine, fenofibrate, artemether, cannabidiol). Two self-dispersing lipid formulations were investigated, which consisted of soybean phospholipids, medium-chain triglycerides and ethanol with a different phospholipid-oil ratio. The direct loading of the bulk formulation was conducted with dual centrifugation, which proved to be a suitable method for screening experiments with the highly viscous formulations. To estimate possible precipitation after dispersion in the gastrointestinal fluids, the solubility of the drugs was investigated in the dispersed formulations. For this purpose, nanodispersions were prepared from the bulk formulations via high pressure homogenization and subsequently subjected to passive loading. A newly developed HPLC method with Charged Aerosol Detection allowed a simultaneous evaluation of the content of soybean lecithin and medium-chain triglycerides in the nanodispersions. When comparing the two phosphatidylcholine-based formulations, a high content of oil was advantageous with regard to a high loading capacity. Drug substances with melting points below 150 °C exhibited a high solubility in the phospholipid-based formulations. A surprisingly high solubility was observed for artemether and cannabidiol with up to 13.0% and 33.3% drug loaded to the formulations, respectively. In the dispersions, a similar solubility as in the bulk formulations was obtained for fenofibrate and cannabidiol. Clofazimine yielded a higher loading result in the nanodispersions than in the bulk formulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974234 | PMC |
http://dx.doi.org/10.3390/ph17030400 | DOI Listing |
Curr Pharm Des
January 2025
Department of Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.
View Article and Find Full Text PDFLangmuir
January 2025
Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.
3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!