The potential hepatotoxicity of Herba Epimedii is a focal point in traditional Chinese medicine security applications. As determined in our previous study, the flavonoid constituents of Herba Epimedii, sagittatoside A, icariside I, baohuoside I and icaritin, are related to the hepatotoxicity of this herb. However, the hepatotoxic mechanism of these components needs to be clarified further, and whether these components can maintain their injury action following liver metabolism needs to be confirmed. Herein, the effects of sagittatoside A, icariside I, baohuoside I and icaritin on the apoptosis of HepG2 cells and the expression of key proteins, including Bax, Bcl-2, Caspase-3 and Caspase-9, were evaluated. Moreover, with liver microsome incubation, the influences of metabolism on the apoptotic activities of these components were investigated. Then, by HPLC-MS/MS analyses, the in vitro metabolic stability of these components was determined after incubation with different kinds of liver microsomes to explain the reason for the influence. The results suggested that sagittatoside A, baohuoside I and icaritin could induce apoptosis, which is likely to be closely related to the induction of the intrinsic apoptosis pathway. After metabolic incubation, the sagittatoside A and icaritin metabolism mixture could still induce apoptosis due to less metabolic elimination, while the icariside I and baohuoside I metabolism mixtures respectively got and lost the ability to induce apoptosis, probably due to quick metabolism and metabolic transformation. The findings of this study may provide important references to explore the material basis and mechanism of the hepatotoxicity of Herba Epimedii.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975178PMC
http://dx.doi.org/10.3390/molecules29061354DOI Listing

Publication Analysis

Top Keywords

herba epimedii
16
induce apoptosis
16
icariside baohuoside
12
baohuoside icaritin
12
apoptosis hepg2
8
hepg2 cells
8
liver microsomes
8
hepatotoxicity herba
8
sagittatoside icariside
8
apoptosis
6

Similar Publications

Targeting PPARα/γ by icariside II to rescue GalN/LPS-induced acute liver injury in mice: Involvement of SIRT6/NF-κB signaling pathway.

Phytomedicine

November 2024

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, PR China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, PR China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, Guizhou, PR China. Electronic address:

Background: Peroxisome proliferator-activated receptor α and-γ (PPARα/γ) are known to play crucial roles in acute liver injury (ALI). Icariside II (ICS II), a natural flavonoid compound derived from Herba EpimedII, confers neuroprotection with PPARα/γ induction potency.

Purpose: This study was aimed to explore whether ICS II has the capacity to protect against ALI, and the role of PPARα/γ in the beneficial effect of ICS II on ALI.

View Article and Find Full Text PDF

Periodontitis is associated with multiple systemic diseases and can cause bone loss. Porphyromonas gingivalis (P. gingivalis) is one of the most virulent periodontal pathogens.

View Article and Find Full Text PDF

Alendronate-functionalized polymeric micelles target icaritin to bone for mitigating osteoporosis in a rat model.

J Control Release

December 2024

Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China. Electronic address:

Formulating drugs into nanoparticles that target sites of disease can lead to strong therapeutic effects with lower doses of drugs and lower rates of off-target adverse effects. Few ways to target drugs to bone have been described, hampering the treatment of osteoporosis. Here we exploit the ability of alendronate to bind tightly to hydroxyapatite in bone as a tactic to target polymeric micelles loaded with the plant flavonoid icaritin to osteoporotic lesions.

View Article and Find Full Text PDF

Icariin (ICA), one of the main active components of , is a natural prenylated flavonol glycoside that possesses a wide range of pharmacological effects, including antioxidant, antiosteoporotic, anti-aging, neuroprotective, immunomodulatory, antitumor, and aphrodisiac effects, and prevents numerous health disorders, such as cardiovascular diseases, osteoporosis, cancer, sexual dysfunction, menstrual disorders, neurodegenerative diseases, asthma, chronic inflammation, and diabetes. In the reproductive system, it has been observed that ICA may play a role in preserving fertility by regulating different signalling pathways, such as PI3K/AKT, which improves ovarian function, and ERα/Nrf2, which enhances testicular function and prevents ROS generation. In contrast, regulating the NF/kB signalling pathway causes anti-inflammatory effects, reducing spontaneous abortions.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is the most common non-traumatic disabling disease affecting young adults. A definitive curative treatment is currently unavailable. Many randomized controlled trials (RCTs) have reported the efficacy of Chinese herbal medicine (CHM) on MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!