Owing to their special structure and excellent physical and chemical properties, conducting polymers have attracted increasing attention in materials science. In recent years, tremendous efforts have been devoted to improving the comprehensive performance of conducting polymers by using the technique of "doping." Spherical polyelectrolyte brushes (SPBs) bearing polyelectrolyte chains grafted densely to the surface of core particles have the potential to be novel dopant of conducting polymers not only because of their spherical structure, high grafting density and high charge density, but also due to the possibility of their being applied in printed electronics. This review first presents a summary of the general dopants of conducting polymers. Meanwhile, conducting polymers doped with spherical polyelectrolyte brushes (SPBs) is highlighted, including the preparation, characterization, performance and doping mechanism. It is demonstrated that comprehensive performance of conducting polymers has improved with the addition of SPBs, which act as template and dopant in the synthesis of composites. Furthermore, the applications and future developments of conductive composites are also briefly reviewed and proposed, which would draw more attention to this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976150 | PMC |
http://dx.doi.org/10.3390/molecules29061315 | DOI Listing |
Sci Rep
January 2025
Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Korea.
Endoscopic retrograde cholangiopancreatography (ERCP) training remains challenging. This study used 3D printing techniques to develop and optimize a portable ERCP training simulator and to implement basic and advanced practical techniques. Subsequently, we aimed to determine whether endoscopy trainees acquired proficiency in ERCP techniques and assess any improvements in their skill levels from using this model.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Laboratory of Organic Solids, Zhongguancun, 100190, Beijing, CHINA.
Conjugated coordination polymers (c-CPs), a novel class of organic-inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Currently, c-CPs incorporating selenium-substituted ligands remain scarce.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Molecularly imprinted polymers (MIPs) are typically synthesized in organic solvents, leading to poor compatibility with water, weak affinity and selectivity for target molecules in aqueous media. To address these challenges, a green and sustainable synthesis of sandwich bread-like ATP@MIP was conducted using polyethylenimide (PEI) and deep eutectic solvent (DES) as hydrophilic bi-functional monomers via layer-by-layer self-assembly on the attapulgite (ATP) carrier. The new ATP@MIP can provide a higher density of imprinting sites with more orderly and uniform distribution due to inhibiting the competitive polymerization between PEI and DES, thereby significantly enhancing recognition ability.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China.
Two series of polycyclic aromatic hydrocarbon isomers ( and , and and ) were designed and synthesized by isomerically fusing phenanthrene with thiophene and thieno[3,2-]thiophene, respectively. All of the new target molecules were confirmed by single-crystal X-ray analysis, and it was found that the solid-state packing can be effectively modulated through a combination of π-extended and isomeric fused strategies. Meanwhile, compared with thiophene ring-terminated isomers and , both having a V-shaped geometry and showing no obvious self-assembly behavior, π-extended unit thieno[3,2-]thiophene-terminated isomer displays a V-shaped structure with moderate self-assembly properties and isomer exhibits a C-shaped configuration with further enhanced self-assembly properties.
View Article and Find Full Text PDFUltrasonics
January 2025
Acoustic and Application Group, Federal University of Alagoas, Campus Arapiraca, Brazil. Electronic address:
3D printing technology, also known as Additive Manufacturing (AM), has revolutionized object prototyping, offering a simple, cost-effective, and efficient approach to creating structures with diverse spatial features. However, the mechanical properties of 3D-printed structures are highly dependent on the material type and manufacturing technique employed. In this study, ultrasonic testing methods were used to comprehensively characterize standard samples produced using two popular printing techniques: material extrusion and vat photopolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!