Nanodiscs belong to a category of water-soluble lipid bilayer nanoparticles. In vivo nanodisc platforms are useful for studying isolated membrane proteins in their native lipid environment. Thus, the development of a practical method for nanodisc reconstruction has garnered consider-able research interest. This paper reports the self-assembly of a mixture of bio-derived cyclic peptide, surfactin (SF), and l-α-dimyristoylphosphatidylcholine (DMPC). We found that SF induced the solubilization of DMPC multilamellar vesicles to form their nanodiscs, which was confirmed by size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy analyses. Owing to its amphiphilic nature, the self-assembled structure prevents the exposure of the hydrophobic lipid core to aqueous media, thus embedding ubiquinol (CoQ10) as a hydrophobic model compound within the inner region of the nanodiscs. These results highlight the feasibility of preparing nanodiscs without the need for laborious procedures, thereby showcasing their potential to serve as promising carriers for membrane proteins and various organic compounds. Additionally, the regulated self-assembly of the DMPC/SF mixture led to the formation of fibrous architectures. These results show the potential of this mixture to function as a nanoscale membrane surface for investigating molecular recognition events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975920PMC
http://dx.doi.org/10.3390/molecules29061300DOI Listing

Publication Analysis

Top Keywords

membrane proteins
8
solubilization phospholipid
4
phospholipid surfactin
4
surfactin leading
4
lipid
4
leading lipid
4
lipid nanodisc
4
nanodisc fibrous
4
fibrous architecture
4
architecture formation
4

Similar Publications

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Transl Neurodegener

December 2024

Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.

Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.

Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.

View Article and Find Full Text PDF

Central nervous system (CNS) resident memory CD8 T cells (T) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 T that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection.

View Article and Find Full Text PDF

Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.

View Article and Find Full Text PDF

Pathogenicity and virulence of : A paradigm of chronic infection.

Virulence

December 2025

The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.

Infection with is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis.

View Article and Find Full Text PDF

The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein found in microglia within the brain, and its soluble form (sTREM2) has been shown to reduce amyloid deposition. Whether elevated TREM2-mediated microglial activity decreases the risk of Alzheimer's disease (AD) is unclear. The aim of this study was to assess whether high cerebrospinal fluid (CSF) levels of sTREM2 attenuate the risk of APOE ε4-associated amyloid pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!