Gas hydrates, a type of inclusion compound capable of trapping gas molecules within a lattice structure composed of water molecules, are gaining attention as an environmentally benign gas storage or separation platform. In general, the formation of gas hydrates from water requires high-pressure and low-temperature conditions, resulting in significant energy consumption. In this study, tetrabutylammonium fluoride (TBAF) was utilized as a thermodynamic promoter forming a semi-clathrate-type hydrate, enabling gas capture or separation at room temperature. Those TBAF hydrate systems were explored to check their capability of CO separation from flue gas, the mixture of CO and N gases. The formation rates and gas storage capacities of TBAF hydrates were systematically investigated under various concentrations of CO, and they presented selective CO capture behavior during the hydrate formation process. The maximum gas storage capacities were achieved at 2.36 and 2.38 mmol/mol for TBAF·29.7 HO and TBAF·32.8 HO hydrate, respectively, after the complete enclathration of the feed gas of CO (80%) + N (20%). This study provides sufficient data to support the feasibility of TBAF hydrate systems to be applied to CO separation from CO/N gas mixtures based on their CO selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976167 | PMC |
http://dx.doi.org/10.3390/molecules29061284 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.
We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.
View Article and Find Full Text PDFAnal Methods
January 2025
College of Life Sciences, Linyi University, Linyi 276000, China.
Wasabi is a type of sauce made from the plant horseradish. During its production and storage, gas production sometimes occurs, which leads to changes in the flavor quality of wasabi. In this study, an electronic nose, electronic tongue, headspace-gas chromatography-mass spectrometry and headspace-gas chromatography-ion mobility spectrometry combined with multivariate statistical analysis were used to compare the differences in odor, taste and volatile components between normal and gas-producing wasabi.
View Article and Find Full Text PDFGas leak detection is one of the most vital issues in the mining and energy industries. Despite many highly specific and sensitive laser-based spectroscopic systems available on the market, the universal optical gas leak detector is still unattainable. In this paper we demonstrate the laser gas sensing setup capable of indirect detection of virtually any gas leaks using differential optical dispersion spectroscopy of oxygen near 761 nm.
View Article and Find Full Text PDFIt is a common occurrence in the fracture processes of deep carbonate reservoirs that the fracturing construction pressure during hydraulic fracturing operation exceeds 80 MPa. The maximum pumping pressure is determined by the rated pressure of the pumping pipe equipment and the reservoir characteristics, which confine the fracture to the target area. When the pump pressure exceeds the safety limit, hydraulic fracturing has to reduce the construction displacement to prevent potential accidents caused by overpressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!