A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modified NiFeO-Supported Graphene Oxide for Effective Urea Electrochemical Oxidation and Water Splitting Applications. | LitMetric

The production of green hydrogen using water electrolysis is widely regarded as one of the most promising technologies. On the other hand, the oxygen evolution reaction (OER) is thermodynamically unfavorable and needs significant overpotential to proceed at a sufficient rate. Here, we outline important structural and chemical factors that affect how well a representative nickel ferrite-modified graphene oxide electrocatalyst performs in efficient water splitting applications. The activities of the modified pristine and graphene oxide-supported nickel ferrite were thoroughly characterized in terms of their structural, morphological, and electrochemical properties. This research shows that the NiFeO@GO electrode has an impact on both the urea oxidation reaction (UOR) and water splitting applications. NiFeO@GO was observed to have a current density of 26.6 mA cm in 1.0 M urea and 1.0 M KOH at a scan rate of 20 mV s. The Tafel slope provided for UOR was 39 mV dec, whereas the GC/NiFeO@GO electrode reached a current of 10 mA cm at potentials of +1.5 and -0.21 V (vs. RHE) for the OER and hydrogen evolution reaction (HER), respectively. Furthermore, charge transfer resistances were estimated for OER and HER as 133 and 347 Ω cm, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974038PMC
http://dx.doi.org/10.3390/molecules29061215DOI Listing

Publication Analysis

Top Keywords

water splitting
12
splitting applications
12
graphene oxide
8
evolution reaction
8
modified nifeo-supported
4
nifeo-supported graphene
4
oxide effective
4
effective urea
4
urea electrochemical
4
electrochemical oxidation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!