A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Step Mechanical and Thermal Homogenization for the Warpage Estimation of Silicon Wafers. | LitMetric

Multi-Step Mechanical and Thermal Homogenization for the Warpage Estimation of Silicon Wafers.

Micromachines (Basel)

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

Published: March 2024

In response to the increasing demand for high-performance capacitors, with a simultaneous emphasis on minimizing their physical size, a common practice involves etching deep vias and coating them with functional layers to enhance operational efficiency. However, these deep vias often cause warpages during the processing stage. This study focuses on the numerical modeling of wafer warpage that occurs during the deposition of three thin layers onto these vias. A multi-step mechanical and thermal homogenization approach is proposed to estimate the warpage of the silicon wafer. The efficiency and accuracy of this numerical homogenization strategy are validated by comparing detailed and homogenized models. The multi-step homogenization method yields more accurate results compared to the conventional direct homogenization method. Theoretical analysis is also conducted to predict the shape of the wafer warpage, and this study further explores the impact of via depth and substrate thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972272PMC
http://dx.doi.org/10.3390/mi15030408DOI Listing

Publication Analysis

Top Keywords

multi-step mechanical
8
mechanical thermal
8
thermal homogenization
8
deep vias
8
wafer warpage
8
homogenization method
8
homogenization
5
warpage
4
homogenization warpage
4
warpage estimation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!