Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organ-on-a-chip (OOC) is an innovative microfluidic device mimicking the structure and functionality of real tissue. OOCs typically involve cell culture with microfluidics to emulate the biological forces of different organ tissues and disease states, providing a next-generation experimental platform. When combined with simulated microgravity conditions, such as those produced by random positioning machines, they offer unique insights into disease processes. Microgravity has been shown to affect cellular behaviors, like proliferation and viability, though its influence on cell physiology is not fully explored. The primary objective of this study was to develop an OOC model with continuous flow under simulated microgravity. Cells cultured in static (non-continuous-flow) conditions exhibited clear growth reduction under microgravity conditions, showing more pronounced difference compared to continuous-flow conditions using an OOC setup. Although our results show that A549 cell viability under continuous flow decreased in microgravity compared to normogravity, this study demonstrates the successful development of a system capable of providing continuous flow in organ-on-a-chip (OOC) models within a random positioning machine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972453 | PMC |
http://dx.doi.org/10.3390/mi15030370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!