Infrared polarization imaging holds significant promise for enhancing target recognition in both civil and defense applications. The Division of Focal Plane (DoFP) scheme has emerged as a leading technology in the field of infrared polarization imaging due to its compact design and absence of moving parts. However, traditional DoFP solutions primarily rely on micro-polarizer arrays, necessitating precise alignment with the focal plane array and leading to challenges in alignment and the introduction of optical crosstalk. Recent research has sought to augment the performance of infrared detectors and enable polarization and spectral selection by integrating metamaterial absorbers with the pixels of the detector. Nevertheless, the results reported so far exhibit shortcomings, including low polarization absorption rates and inadequate polarization extinction ratios. Furthermore, there is a need for a comprehensive figure of merit to systematically assess the performance of polarization-selective thermal detectors. In this study, we employ the particle swarm optimization algorithm to present a multilayer, multi-sized metamaterial absorber capable of achieving a remarkable polarization-selective absorption rate of up to 87.2% across the 8-14 μm spectral range. Moreover, we attain a polarization extinction ratio of 38.51. To elucidate and predict the resonant wavelengths of the structure, we propose a modified equivalent circuit model. Our analysis employs optical impedance matching to unveil the underlying mechanisms responsible for the high absorption. We also introduce a comprehensive figure of merit to assess the efficacy of infrared polarization detection through the integration of metamaterials with microbolometers. Finally, drawing on the proposed figure of merit, we suggest future directions for improving integrated metamaterial absorber designs, with the potential to advance practical mid-infrared polarization imaging technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972300 | PMC |
http://dx.doi.org/10.3390/mi15030319 | DOI Listing |
Microsyst Nanoeng
January 2025
Sichuan University, 610207, Chengdu, China.
In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Metamaterial absorbers have gained widespread applications in fields such as sensing, imaging, and electromagnetic cloaking due to their unique absorption characteristics. This paper presents the design and fabrication of a novel K-band polarization-sensitive metamaterial absorber, which operates in the frequency range of 20.76 to 24.
View Article and Find Full Text PDFLangmuir
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran.
Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, Kuwait University, 13060, Kuwait City, Kuwait.
Sci Rep
December 2024
Division of Advanced Electrical and Electronics Engineering, Tokyo University of Agriculture and Technology, 2- 24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
A hyperbolic metamaterial absorber has great potential for improving the performance of photo-thermoelectric devices targeting heat sources owing to its broadband absorption. However, optimizing its geometry requires considering numerous parameters to achieve absorption that aligns with the radiation spectrum. Here, we compare three algorithms using deep reinforcement learning for the optimization of a hyperbolic metamaterial absorber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!