The relationship between diabetes mellitus and ocular complications has been extensively studied by many authors. Diabetic keratopathy has already been well characterized and defined as a clinical entity. This review focuses on exploring corneal epithelial changes in diabetic patients, aiming to provide a pragmatic overview of the existing knowledge on this topic. The paper systematically examines alterations in corneal epithelial structure and their impact on diabetic patients. Advanced imaging techniques are also discussed for their role in precise characterization and improved diagnostics. Additionally, the paper explores the mechanisms behind corneal epithelial changes in diabetes, looking at factors such as hyperglycemia, oxidative stress, and Advanced Glycation End-Products. The impact of altered corneal epithelial integrity on barrier function and susceptibility to external issues is considered, addressing potential links to heightened proteolytic enzyme activities and delayed wound healing observed in diabetic individuals. The review also covers the practical implications of corneal epithelial changes, including the association with corneal erosions, persistent epithelial defects, and an increased risk of dry eye syndrome in diabetic patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970528PMC
http://dx.doi.org/10.3390/ijms25063471DOI Listing

Publication Analysis

Top Keywords

corneal epithelial
24
epithelial changes
16
diabetic patients
16
changes diabetic
8
corneal
7
diabetic
6
epithelial
6
changes
4
patients
4
patients review
4

Similar Publications

We describe a novel technique for recurrent pterygium and assess the advantage of properties of extended tenonectomy, amniotic membrane transplantation, and limbal epithelial transplantation in terms of recurrence rate, postoperative symptoms, postoperative orthoptics, and other complications. A total of nine eyes with recurrent pterygium underwent PERMISLET, i.e.

View Article and Find Full Text PDF

Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.

Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.

View Article and Find Full Text PDF

ROS scavenging and corneal epithelial wound healing by a self-crosslinked tissue-adhesive hydrogel based-on dual-functionalized hyaluronic acid.

Int J Biol Macromol

December 2024

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional.

View Article and Find Full Text PDF

Objectives: To demonstrate corneal remodeling after corneal allograft intrastromal ring segment (CAIRS) with an anterior-segment optical coherence tomography (AS-OCT).

Design: A prospective observational single-center study.

Methods: This observational study included keratoconus patients who underwent CAIRS implantation into a stromal tunnel.

View Article and Find Full Text PDF

Cornea tissue engineering is strictly dependent on the development of biomaterials that fulfill the strict biocompatibility, biomechanical, and optical requirements of this organ. In this work, we generated novel biomaterials from the squid gladius (SG), and their application in cornea tissue engineering was evaluated. Results revealed that the native SG (N-SG) was biocompatible in laboratory animals, although a local inflammatory reaction was driven by the material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!