Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in , requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of . In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of , influencing pathogenicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970683 | PMC |
http://dx.doi.org/10.3390/ijms25063434 | DOI Listing |
Cell Death Differ
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:
Septin 9 (SEPT9), a GTPase, known as the fourth cytoskeleton, is widely expressed in various cells and tissues. The functions of SEPT9 are partly similar to other cytoskeletons as a structure protein. Further, SEPT9 can interact with other cytoskeletons, participating in actin dynamics and microtubule regulation.
View Article and Find Full Text PDFBasic Clin Androl
December 2024
Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team 'Physiopathology and Pathophysiology of Sperm cells', 38000, Grenoble, France.
The annulus is an electron-dense ring structure that surrounds the axoneme and compartmentalizes the sperm flagellum into two parts: the midpiece and the principal piece. The function of the annulus as a diffusion barrier in the mature spermatozoon is now well described but its function during spermiogenesis remains unclear. The intriguing spatio-temporal dynamics of the annulus during spermiogenesis and its position at the interface of the two main flagellar compartments have been highlighted for more than 50 years, and suggest a major role in this process.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
Colletotrichum gloeosporioides is a model plant pathogenic fungus, and the appressoria are the main infection structures integral to the pathogenic process. Septin proteins play fundamental roles in facilitating shape alteration and organizing the F-actin cytoskeleton, thereby aiding the invasive growth of various fungi. Herein, we examined the roles of four septin-coding genes (CgSEP3, CgSEP4, CgSEP5, and CgSEP6) in C.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2024
Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States.
Our knowledge of the assembly and dynamics of the cytokinetic contractile ring (CR) in animal cells remains incomplete. We have previously used super-resolution light microscopy and platinum replica electron microscopy to elucidate the ultrastructural organization of the CR in first division sea urchin embryos. To date, our studies indicate that the CR initiates as an equatorial band of clusters containing myosin II, actin, septin and anillin, which then congress over time into patches which coalesce into a linear array characteristic of mature CRs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!