Photodynamic therapy (PDT) is a therapeutic option for cancer, in which photosensitizer (PS) drugs, light, and molecular oxygen generate reactive oxygen species (ROS) and induce cell death. First- and second-generation PSs presented with problems that hindered their efficacy, including low solubility. Thus, second-generation PSs loaded into nanocarriers were produced to enhance their cellular uptake and therapeutic efficacy. Among other compounds investigated, the dye methylene blue (MB) showed potential as a PS, and its photodynamic activity in tumor cells was reported even in its nanocarrier-delivered form, including liposomes. Here, we prepared polydopamine (PDA)-coated liposomes and efficiently adsorbed MB onto their surface. lipoPDA@MB vesicles were first physico-chemically characterized and studies on their light stability and on the in vitro release of MB were performed. Photodynamic effects were then assessed on a panel of 2D- and 3D-cultured cancer cell lines, comparing the results with those obtained using free MB. lipoPDA@MB uptake, type of cell death induced, and ability to generate ROS were also investigated. Our results show that lipoPDA@MB possesses higher photodynamic potency compared to MB in both 2D and 3D cell models, probably thanks to its higher uptake, ROS production, and apoptotic cell death induction. Therefore, lipoPDA@MB appears as an efficient drug delivery system for MB-based PDT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970349PMC
http://dx.doi.org/10.3390/ijms25063392DOI Listing

Publication Analysis

Top Keywords

cell death
12
methylene blue
8
photodynamic therapy
8
second-generation pss
8
photodynamic
5
cell
5
polydopamine-coated liposomes
4
liposomes methylene
4
blue delivery
4
delivery anticancer
4

Similar Publications

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma.

Biomed Pharmacother

December 2024

Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea. Electronic address:

Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Microglia-like cells from patient monocytes demonstrate increased phagocytic activity in probable Alzheimer's disease.

Mol Cell Neurosci

December 2024

Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.

View Article and Find Full Text PDF

Self-assembled natural triterpenoids for the delivery of cyclin-dependent kinase 4/6 inhibitors to enhance cancer chemoimmunotherapy.

J Control Release

December 2024

Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China. Electronic address:

Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!