Comparison of the Capacity of Several Machine Learning Tools to Assist Immunofluorescence-Based Detection of Anti-Neutrophil Cytoplasmic Antibodies.

Int J Mol Sci

Service d'Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France.

Published: March 2024

The success of artificial intelligence and machine learning is an incentive to develop new algorithms to increase the rapidity and reliability of medical diagnosis. Here we compared different strategies aimed at processing microscope images used to detect anti-neutrophil cytoplasmic antibodies, an important vasculitis marker: (i) basic classifier methods (logistic regression, k-nearest neighbors and decision tree) were used to process custom-made indices derived from immunofluorescence images yielded by 137 sera. (ii) These methods were combined with dimensional reduction to analyze 1733 individual cell images. (iii) More complex models based on neural networks were used to analyze the same dataset. The efficiency of discriminating between positive and negative samples and different fluorescence patterns was quantified with Rand-type accuracy index, kappa index and ROC curve. It is concluded that basic models trained on a limited dataset allowed for positive/negative discrimination with an efficiency comparable to that obtained by conventional analysis performed by humans (0.84 kappa score). More extensive datasets and more sophisticated models may be required for efficient discrimination between fluorescence patterns generated by different auto-antibody species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969855PMC
http://dx.doi.org/10.3390/ijms25063270DOI Listing

Publication Analysis

Top Keywords

machine learning
8
anti-neutrophil cytoplasmic
8
cytoplasmic antibodies
8
fluorescence patterns
8
comparison capacity
4
capacity machine
4
learning tools
4
tools assist
4
assist immunofluorescence-based
4
immunofluorescence-based detection
4

Similar Publications

Evaluating the impact of modeling choices on the performance of integrated genetic and clinical models.

Genet Med

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:

Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!