Cardiovascular diseases are a significant cause of illness and death worldwide, often resulting in myofibroblast differentiation, pathological remodeling, and fibrosis, characterized by excessive extracellular matrix protein deposition. Treatment options for cardiac fibrosis that can effectively target myofibroblast activation and ECM deposition are limited, necessitating an unmet need for new therapeutic approaches. In recent years, microcurrent therapy has demonstrated promising therapeutic effects, showcasing its translational potential in cardiac care. This study therefore sought to investigate the effects of microcurrent therapy on cardiac myofibroblasts, aiming to unravel its potential as a treatment for cardiac fibrosis and heart failure. The experimental design involved the differentiation of primary rat cardiac fibroblasts into myofibroblasts. Subsequently, these cells were subjected to microcurrent (MC) treatment at 1 and 2 µA/cm DC with and without polarity reversal. We then investigated the impact of microcurrent treatment on myofibroblast cell behavior, including protein and gene expression, by performing various assays and analyses comparing them to untreated myofibroblasts and cardiac fibroblasts. The application of microcurrents resulted in distinct transcriptional signatures and improved cellular processes. Gene expression analysis showed alterations in myofibroblast markers, extracellular matrix components, and pro-inflammatory cytokines. These observations show signs of microcurrent-mediated reversal of myofibroblast phenotype, possibly reducing cardiac fibrosis, and providing insights for cardiac tissue repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970173 | PMC |
http://dx.doi.org/10.3390/ijms25063268 | DOI Listing |
Circ Heart Fail
January 2025
Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.).
Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.
View Article and Find Full Text PDFInt J Cardiol Cardiovasc Risk Prev
March 2025
Beijing Chaoyang Hospital, Capital Medical University, Department of Endocrinology, Beijing, China.
Object: To explore the mechanism of diabetic cardiomyopathy that hyperglycemia may affect the cardiac function by inhibiting the expression of ATPase β subunit.
Method: Cardiac function, fibrosis levels, and the expression of the ATPase β subunit were observed in Akita mice-a diabetes mice model without lipid metabolism disorders--using morphological, molecular biology, and echocardiographic analyses compared to wild-type mice. The study revealed a connection between the decreased ATPase β subunit and the development of diabetic myocardial injury.
Heliyon
January 2025
Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China.
Background: Pulmonary fibrosis (PF) is an irreversible and usually fatal lung disease. In recent years, the therapeutic role of exosomes derived from mesenchymal stem cells (MSC-exos) in anti-fibrotic treatment has received much attention. In this study, we aimed to determine the anti-fibrotic properties and related molecular mechanisms of MSC-exos in Bleomycin(BLM)-induced PF.
View Article and Find Full Text PDFLife Med
October 2022
Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
Human induced pluripotent stem cell (hiPSC)-derived cardiac organoids can be used to model human heart development and cardiovascular disease, and provide therapeutic cells to repair the heart. We used single-cell transcriptome analysis to dissect the development of 3D mini-cardiac organoids (MCOs) consisting of hiPSC-derived cardiomyocytes, and endothelial and smooth muscle cells. We found that the 3D matrix-rich microenvironment significantly promoted the maturation of cardiomyocytes, and mixing endothelial and smooth muscle cells with cardiomyocytes led to the formation of cardiac fibroblast highly expressing .
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY.
During acute myocardial infarction, the composition of the extracellular matrix changes remarkably. One of the most notable changes in the extracellular matrix is in the accumulation of collagen; however, hyaluronan rivals collagen in its abundance. Yet, the extent to which specific cells and enzymes may contribute to such accumulation has been largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!