The communication between mitochondria and the endoplasmic reticulum (ER) is facilitated by a dynamic membrane structure formed by protein complexes known as mitochondria-associated membranes (MAMs). The structural and functional integrity of MAMs is crucial for insulin signal transduction, relying heavily on their regulation of intracellular calcium homeostasis, lipid homeostasis, mitochondrial quality control, and endoplasmic reticulum stress (ERS). This article reviews recent research findings, suggesting that exercise may promote the remodeling of MAMs structure and function by modulating the expression of molecules associated with their structure and function. This, in turn, restores cellular homeostasis and ultimately contributes to the amelioration of insulin resistance (IR). These insights provide additional possibilities for the study and treatment of insulin resistance-related metabolic disorders such as obesity, diabetes, fatty liver, and atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970480 | PMC |
http://dx.doi.org/10.3390/ijms25063196 | DOI Listing |
Mol Cell Neurosci
January 2025
Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biology, University of Padua, 35131 Padua, Italy.
Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes.
View Article and Find Full Text PDFBiomolecules
January 2025
School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China. Electronic address:
Unlabelled: Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension.
Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition.
ACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!