In Vitro Cross-Linking MS Reveals SMG1-UPF2-SMG7 Assembly as Molecular Partners within the NMD Surveillance.

Int J Mol Sci

International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland.

Published: March 2024

mRNAs containing premature stop codons are responsible for various genetic diseases as well as cancers. The truncated proteins synthesized from these aberrant mRNAs are seldom detected due to the nonsense-mediated mRNA decay (NMD) pathway. Such a surveillance mechanism detects most of these aberrant mRNAs and rapidly destroys them from the pool of mRNAs. Here, we implemented chemical cross-linking mass spectrometry (CLMS) techniques to trace novel biology consisting of protein-protein interactions (PPIs) within the NMD machinery. A set of novel complex networks between UPF2 (Regulator of nonsense transcripts 2), SMG1 (Serine/threonine-protein kinase SMG1), and SMG7 from the NMD pathway were identified, among which UPF2 was found as a connection bridge between SMG1 and SMG7. The UPF2 N-terminal formed most interactions with SMG7, and a set of residues emerged from the MIF4G-I, II, and III domains docked with SMG1 or SMG7. SMG1 mediated interactions with initial residues of UPF2, whereas SMG7 formed very few interactions in this region. Modelled structures highlighted that PPIs for UPF2 and SMG1 emerged from the well-defined secondary structures, whereas SMG7 appeared from the connecting loops. Comparing the influence of cancer-derived mutations over different CLMS sites revealed that variants in the PPIs for UPF2 or SMG1 have significant structural stability effects. Our data highlights the protein-protein interface of the SMG1, UPF2, and SMG7 genes that can be used for potential therapeutic approaches. Blocking the NMD pathway could enhance the production of neoantigens or internal cancer vaccines, which could provide a platform to design potential peptide-based vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969982PMC
http://dx.doi.org/10.3390/ijms25063182DOI Listing

Publication Analysis

Top Keywords

nmd pathway
12
smg1 smg7
12
aberrant mrnas
8
smg1
8
formed interactions
8
upf2 smg7
8
ppis upf2
8
upf2 smg1
8
upf2
7
smg7
7

Similar Publications

Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive.

View Article and Find Full Text PDF

Discovered more than four decades ago, nonsense-mediated mRNA decay (NMD) plays a fundamental role in the regulation of gene expression and is a major contributor to numerous diseases. With advanced technologies, several novel approaches aim to directly circumvent the effects of disease-causing frameshift and nonsense mutations. Additional therapeutics aim to globally dampen the NMD pathway in diseases associated with pathway hyperactivation, one example being Fragile X Syndrome.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the pain-relieving (analgesic) and anxiety-reducing (anxiolytic) effects of citronellal (CTL) in Swiss mice using innovative, cost-effective models.
  • Results showed that CTL significantly decreased various anxiety and pain-related behaviors in mice compared to a control group, even outperforming standard drugs like diclofenac sodium in some tests.
  • In addition, in silico studies suggested that CTL interacts with specific receptors (GABA) and enzymes (COX), indicating its potential as an effective anxiolytic and analgesic agent through these molecular pathways.
View Article and Find Full Text PDF

Background: The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades premature aberrant transcripts and importantly, it also takes part in gene expression regulation by regulating the endogenous transcripts. NMD distinguishes aberrant and non-aberrant transcript by looking after the NMD signatures such as long 3' UTR. NMD modulates cellular surveillance and eliminates the plausible synthesis of truncated proteins as because if the aberrant mRNA escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!