Preferentially expressed antigen in melanoma (PRAME), a member of the cancer testis antigen family, is a promising target for cancer immunotherapy. Understanding the epigenetic mechanisms involved in the regulation of PRAME expression might be crucial for optimizing anti-PRAME treatments. Three malignancies of different lineages (sinonasal melanoma, testicular seminoma, and synovial sarcoma), in which immunohistochemical (IHC) reactivity for PRAME is a common yet variable feature, were studied. The expression of PRAME, ten-eleven translocation demethylase 1 (TET1), and DNA methyltransferase (DNMT) 3A and 3B were evaluated using immunohistochemistry. Moreover, the expression of two epigenetic marks, 5-hydroxymethylcytosine (5hmC) and histone 3 acetylation (H3ac), was tested. All PRAME-positive tumors expressed medium-to-high levels of H3ac but differed considerably with respect to other markers. In seminomas, PRAME expression correlated with TET1, but in melanomas and synovial sarcomas, it correlated with both DNMTs and DNMT3A, respectively. PRAME expression was not determined by a balance between the global expression of DNA methylating/demethylating enzymes. However, histone acetylation may be one of the epigenetic mechanisms involved in PRAME regulation. Thus, the therapeutic combination of histone deacetylase inhibitors and PRAME immunotherapy merits further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971184PMC
http://dx.doi.org/10.3390/jcm13061554DOI Listing

Publication Analysis

Top Keywords

histone acetylation
12
prame expression
12
prame
9
expression
8
epigenetic mechanisms
8
mechanisms involved
8
expression immunotherapy
4
immunotherapy target
4
target prame
4
prame cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!